93 research outputs found
Total and Visceral Adiposity Are Associated With Prevalent Vertebral Fracture in Women but Not Men at Age 62 Years: The Newcastle Thousand Families Study
Low body weight is an established risk factor for osteoporosis and fracture, but the skeletal risks of higher adiposity are unclear and appear sex‐specific and site‐dependent. The aim of this study was to investigate associations of total fat mass (TFM), visceral adipose tissue (VAT), and C‐reactive protein (CRP) with bone mineral density (BMD) and prevalent vertebral fracture (VF) in men and women aged 62 years. A total of 352 men and women aged 62.5 ± 0.5 years from the Newcastle Thousand Families Study cohort received dual‐energy X‐ray absorptiometry (DXA) evaluations of femoral neck and lumbar spine BMD, of the lateral spine for vertebral fracture assessment, and of the whole body for TFM and VAT (GE Lunar CoreScan, Madison, WI, USA). Plasma CRP, FRAX scores, falls in the last 12 months, and occupation at age 50 years were also included in the analysis. Vertebral fractures were less prevalent in women than in men (odds ratio [OR] = 0.33, p < 0.001) and BMD or FRAX scores did not differ between participants with and without VF. Women with VF were heavier and had higher TFM, VAT, and CRP than women without (p < 0.001). In women, greater (+1 SD) TFM and VAT increased the odds of any grade VF (TFM: OR = 1.06, p = 0.001; VAT: OR = 2.50, p = 0.002), and greater VAT mass increased the odds of prevalent mild VF (OR = 2.60, p = 0.002). In contrast, there were no associations in men. In both sexes, after controlling for body weight, neither VAT nor CRP were associated with BMD. In conclusion, irrespective of BMD, total and visceral adiposity were associated with prevalent VF in women but not in men. High fat mass, particularly if visceral, should be considered when assessing VF risk in women. Risk factors for VF in men require further investigation, particularly given their high prevalence
Caribbean Spiny Lobster Fishery Is Underpinned by Trophic Subsidies from Chemosynthetic Primary Production
Data files are deposited with Figshare and are available at: https://dx.doi.org/10.6084/ m9.figshare.4225334
The Eruption of the Candidate Young Star ASASSN-15qi
Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star-disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The mag brightening in the band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission from K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km/s. The wind and hot gas both disappeared as the outburst faded and the source the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10-20 days. Fluorescent excitation of H is detected in emission from vibrational levels as high as , also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, although the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling
Exercise and bone health across the lifespan
With ageing, bone tissue undergoes significant compositional, architectural and metabolic alterations potentially leading to osteoporosis. Osteoporosis is the most prevalent bone disorder, which is characterised by progressive bone weakening and an increased risk of fragility fractures. Although this metabolic disease is conventionally associated with ageing and menopause, the predisposing factors are thought to be established during childhood and adolescence. In light of this, exercise interventions implemented during maturation are likely to be highly beneficial as part of a long-term strategy to maximise peak bone mass and hence delay the onset of age- or menopause-related osteoporosis. This notion is supported by data on exercise interventions implemented during childhood and adolescence, which confirmed that weight-bearing activity, particularly if undertaken during peripubertal development, is capable of generating a significant osteogenic response leading to bone anabolism. Recent work on human ageing and epigenetics suggests that undertaking exercise after the fourth decade of life is still important, given the anti-ageing effect and health benefits provided, potentially occurring via a delay in telomere shortening and modification of DNA methylation patterns associated with ageing. Exercise is among the primary modifiable factors capable of influencing bone health by preserving bone mass and strength, preventing the death of bone cells and anti-ageing action provided
- …