56 research outputs found
Forward production of charged pions with incident on nuclear targets measured at the CERN PS
Measurements of the double-differential production cross-section
in the range of momentum 0.5 \GeVc \leq p \le 8.0 \GeVc and angle 0.025 \rad
\leq \theta \le 0.25 \rad in interactions of charged pions on beryllium,
carbon, aluminium, copper, tin, tantalum and lead are presented. These data
represent the first experimental campaign to systematically measure forward
pion hadroproduction. The data were taken with the large acceptance HARP
detector in the T9 beam line of the CERN PS. Incident particles, impinging on a
5% nuclear interaction length target, were identified by an elaborate system of
beam detectors. The tracking and identification of the produced particles was
performed using the forward spectrometer of the HARP detector. Results are
obtained for the double-differential cross-sections mainly at four incident pion beam
momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). The measurements are compared
with the GEANT4 and MARS Monte Carlo simulationComment: to be published on Nuclear Physics
Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets
A measurement of the double-differential production cross-section
in proton--carbon, proton--copper and proton--tin collisions in the range of
pion momentum 100 \MeVc \leq p < 800 \MeVc and angle 0.35 \rad \le \theta
<2.15 \rad is presented. The data were taken with the HARP detector in the T9
beam line of the CERN PS. The pions were produced by proton beams in a momentum
range from 3 \GeVc to 12 \GeVc hitting a target with a thickness of 5% of a
nuclear interaction length. The tracking and identification of the produced
particles was done using a small-radius cylindrical time projection chamber
(TPC) placed in a solenoidal magnet. An elaborate system of detectors in the
beam line ensured the identification of the incident particles. Results are
shown for the double-differential cross-sections at four incident proton beam
momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc)
Large-angle production of charged pions by 3 GeV/c - 12.9 GeV/c protons on beryllium, aluminium and lead targets
Measurements of the double-differential production cross-section
in the range of momentum 100 \MeVc \leq p < 800 \MeVc and angle 0.35 \rad
\leq \theta < 2.15 \rad in proton--beryllium, proton--aluminium and
proton--lead collisions are presented. The data were taken with the HARP
detector in the T9 beam line of the CERN PS. The pions were produced by proton
beams in a momentum range from 3 \GeVc to 12.9 \GeVc hitting a target with a
thickness of 5% of a nuclear interaction length. The tracking and
identification of the produced particles was performed using a small-radius
cylindrical time projection chamber (TPC) placed inside a solenoidal magnet.
Incident particles were identified by an elaborate system of beam detectors.
Results are obtained for the double-differential cross-sections at six incident
proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc, 8.9 \GeVc (Be only), 12 \GeVc
and 12.9 \GeVc (Al only)) and compared to previously available data
Measurement of the production of charged pions by protons on a tantalum target
A measurement of the double-differential cross-section for the production of
charged pions in proton--tantalum collisions emitted at large angles from the
incoming beam direction is presented. The data were taken in 2002 with the HARP
detector in the T9 beam line of the CERN PS. The pions were produced by proton
beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target
with a thickness of 5% of a nuclear interaction length. The angular and
momentum range covered by the experiment (100 \MeVc \le p < 800 \MeVc and
0.35 \rad \le \theta <2.15 \rad) is of particular importance for the design
of a neutrino factory. The produced particles were detected using a
small-radius cylindrical time projection chamber (TPC) placed in a solenoidal
magnet. Track recognition, momentum determination and particle identification
were all performed based on the measurements made with the TPC. An elaborate
system of detectors in the beam line ensured the identification of the incident
particles. Results are shown for the double-differential cross-sections
at four incident
proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the
pion yields within the acceptance of typical neutrino factory designs are shown
as a function of beam momentum. The measurement of these yields within a single
experiment eliminates most systematic errors in the comparison between rates at
different beam momenta and between positive and negative pion production.Comment: 49 pages, 31 figures. Version accepted for publication on Eur. Phys.
J.
Measurement of the production cross-section of positive pions in the collision of 8.9 GeV/c protons on beryllium
The double-differential production cross-section of positive pions,
, measured in the HARP experiment is presented.
The incident particles are 8.9 GeV/c protons directed onto a beryllium target
with a nominal thickness of 5% of a nuclear interaction length. The measured
cross-section has a direct impact on the prediction of neutrino fluxes for the
MiniBooNE and SciBooNE experiments at Fermilab. After cuts, 13 million protons
on target produced about 96,000 reconstructed secondary tracks which were used
in this analysis. Cross-section results are presented in the kinematic range
0.75 GeV/c < < 6.5 GeV/c and 30 mrad < < 210 mrad in
the laboratory frame.Comment: 39 pages, 21 figures. Version accepted for publication by Eur. Phys.
J.
Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory
Data from the Pierre Auger Observatory are analyzed to search for
anisotropies near the direction of the Galactic Centre at EeV energies. The
exposure of the surface array in this part of the sky is already significantly
larger than that of the fore-runner experiments. Our results do not support
previous findings of localized excesses in the AGASA and SUGAR data. We set an
upper bound on a point-like flux of cosmic rays arriving from the Galactic
Centre which excludes several scenarios predicting sources of EeV neutrons from
Sagittarius . Also the events detected simultaneously by the surface and
fluorescence detectors (the `hybrid' data set), which have better pointing
accuracy but are less numerous than those of the surface array alone, do not
show any significant localized excess from this direction.Comment: Matches published versio
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Forward pi+/- production in p-O2 and p-N2 interactions at 12 GeV/c
Measurements of double-differential charged pion production cross-sections in
interactions of 12 GeV/c protons on O_2 and N_2 thin targets are presented in
the kinematic range 0.5 GeV/c < p_{\pi} < 8 GeV/c and 50 mrad < \theta_{\pi} <
250 mrad (in the laboratory frame) and are compared with p--C results. For
p--N_2 (p--O_2) interactions the analysis is performed using 38576 (7522)
reconstructed secondary pions. The analysis uses the beam instrumentation and
the forward spectrometer of the HARP experiment at CERN PS. The measured
cross-sections have a direct impact on the precise calculation of atmospheric
neutrino fluxes and on the improved reliability of extensive air shower
simulations by reducing the uncertainties of hadronic interaction models in the
low energy range. In particular, the present results allow the common
hypothesis that p--C data can be used to predict the p--N_2 and p--O_2 pion
production cross-sections to be tested
Qualidade microbiológica e vida útil de filés defumados de tilápia-do-nilo sob refrigeração ou congelamento
O objetivo deste trabalho foi avaliar a qualidade microbiológica e a vida útil de filés de tilápia-do-nilo, submetidos a diferentes métodos de defumação e condições de armazenamento. Foram utilizados dois processos de defumação (a frio ou a quente), em filés com ou sem pigmentação. Os produtos foram armazenados sob refrigeração ou congelados, e monitorados por 28 dias para avaliação da vida útil. Os filés congelados foram monitorados continuamente por 146 dias, apenas para a análise de ácido tiobarbitúrico (TBA). Defumação a quente e a frio reduziram a quantidade de coliformes, respectivamente em 99,78% e 97,80%. O armazenamento do produto sob refrigeração permitiu a redução de 99,73% dos coliformes, e o armazenamento sob congelamento os reduziu em 99,83%. Os valores encontrados de coliformes fecais estiveram dentro do limite permitido. Os valores de TBA nos filés atingiram o máximo no 14o dia de armazenamento. Os valores de TBA nos tratamentos sob refrigeração foram superiores aos daqueles sob congelamento e, também, em filés defumados a frio, em comparação aos defumados a quente. O processo de defumação a quente, com posterior armazenamento sob congelamento, é a técnica mais apropriada para assegurar qualidade e maior período de vida útil para os filés de tilápia-do-nilo, independentemente do processo de pigmentação
- …