93 research outputs found

    Differences in ammonium oxidizer abundance and N uptake capacity between epilithic and epipsammic biofilms in an urban stream

    Get PDF
    The capacity of stream biofilms to transform and assimilate N in highly N-loaded streams is essential to guarantee the water quality of freshwater resources in urbanized areas. However, the degree of N saturation experienced by urban streams and their response to acute increases in N concentration are largely unknown. We measured changes in the rates of NH4+ uptake (UNH4) and oxidation (UAO) resulting from experimental increases in NH4+-N concentration in mature biofilms growing downstream of a wastewater treatment plant (WWTP) and, thus, naturally exposed to high N concentration. We investigated the responses of UNH4 and UAO to NH4+-N increases and the abundance of NH4+ oxidizing bacteria and archaea (AOB and AOA) in epilithic and epipsammic biofilms. UNH4 and UAO increased with increasing NH4+-N concentration for the 2 biofilm types, suggesting no N saturation under ambient levels of NH4+-N. Thus, these biofilms can contribute to mitigating N excesses and the variability of NH4+-N concentrations from WWTP effluent inputs. The 2 biofilm types exhibited different Michaelis-Menten kinetics, indicating different capacity to respond to acute increases in NH4+-N concentration. Mean UNH4 and UAO were 5× higher in epilithic than epipsammic biofilms, coinciding with a higher abundance of AOA+AOB in the former than in the later (76 × 104 vs 14 × 104 copies/cm2). AOB derived from active sludge dominated in epilithic biofilms, so our results suggest that WWTP effluents can strongly influence in-stream NH4+ processing rates by increasing N inputs and by supplying AOA+AOB that are able to colonize some stream habitat

    Wastewater treatment plant effluent inputs influence the temporal variability of nutrient uptake in an intermittent stream

    Get PDF
    Wastewater treatment plant (WWTP) effluents alter water chemistry and in-stream nutrient uptake rates of receiving freshwaters, thus changing the magnitude and fate of the nutrients exported. In Mediterranean regions, the dilution capacity of receiving streams can vary strongly over time due to the seasonal occurrence of floods and droughts, causing temporal variability of nutrient uptake. We assessed the temporal patterns and the controlling factors of net nutrient uptake in an intermittent Mediterranean stream receiving WWTP effluent inputs. We compiled the longitudinal concentration profiles of ambient dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) along a 800 m reach on 47 sampling dates between 2001 and 2017, encompassing a wide range of hydrological conditions. We estimated net nutrient uptake in the receiving stream. In 72% of the dates, high rates of net ammonium uptake co-occurred with net releases of either nitrate or nitrite. This pattern suggests that the receiving stream has a high nitrification capacity. Conversely, 75% of the dates did not show any longitudinal pattern in SRP concentration, suggesting that uptake and release processes for this element were either counterbalanced or both occurred at very low rates. Finally, net ammonium uptake was low when the stream had a low dilution capacity (< 40%) and ammonium concentration was high. Overall, we demonstrate that consideration of the receiving stream’s dilution capacity is imperative to the management of freshwaters to guarantee an adequate dilution of WWTP effluent inputs and avoid saturation of in-stream nutrient uptake capacity under low flow conditions in urban landscapes

    Stream drying drives microbial ammonia oxidation and first-flush nitrate export

    Get PDF
    Acknowledgments We thank Roser Ventosa for technical assistance at the Nutrient Analytical Service of the CEAB-CSIC, Unai Perez de Arenaza Basauri for field assistance and Iñaki Odriozola and Aitor Larrañaga for statistical advice. We also acknowledge two anonymous reviewers for valuable feedback and constructive comments on the manuscript. S. N. Merbt was supported by a JAE predoctoral fellowship from the Spanish National Research Council (CSIC). This research was granted by the projects DARKNESS (CGL2012-32747, MINECO) to E. O. Casamayor and MED_FORESTREAM (CGL2011-30590-CO2-02, MINECO) and REFRESH (244121 FP7 EU Commission) to E. Martí.Peer reviewedPostprin

    Influence of Microplastics on Microbial Structure, Function, and Mechanical Properties of Stream Periphyton

    Get PDF
    Este artículo contiene 17 páginas, 5 figuras, 4 tablas.Periphyton is a freshwater biofilm composed of prokaryotic and eukaryotic communities that occupy rocks and sediments, forming the base of the food web and playing a key role in nutrient cycling. Given the large surface that periphyton comprises, it may also act as a sink for a diverse range of man-made pollutants, including microplastics (MP). Here we investigated the effect of 1–4 μm and 63–75 µm sized, spherical polyethylene MP with native and ultraviolet (UV)-weathered surface on developing natural stream periphyton communities over 28 days. In order to ensure proper particle exposure, we first tested MP suspension in water or in water containing either Tween 80, extracellular polymeric substances – EPS, fulvic acids, or protein. We found the extract of EPS from natural periphyton to be most suitable to create MP suspensions in preparation of exposure. Upon exposure, all tested types of MP were found to be associated with the periphyton, independent of their size and other properties. While biomass accrual and phenotypic community structure of the photoautotrophs remained unchanged, the prokaryotic and eukaryotic communities experienced a significant change in composition and relative abundances. Moreover, alpha diversity was affected in eukaryotes, but not in prokaryotes. The observed changes were more prominent in periphyton exposed to UV-treated as compared with native surface MP. Mechanical properties, as assessed by compression rheology, showed that MP-exposed periphyton had longer filamentous streamers, higher stiffness, lower force recovery and a higher viscoelasticity than control periphyton. Despite the observed structural and mechanical changes of periphyton, functional parameters (i.e., photosynthetic yield, respiration and nutrient uptake efficiencies) were not altered by MP, indicating the absence of MP toxicity, and suggesting functional redundancy in the communities. Together, our results provide further proof that periphyton is a sink for MP and demonstrate that MP can impact local microbial community composition and mechanical properties of the biofilms. Consequences of these findings might be a change in dislodgement behavior of periphyton, a propagation through the food chains and impacts on nutrient cycling and energy transfer. Hence, taking the omnipresence, high persistence and material and size diversity of MP in the aquatic environment into account, their ecological consequences need further investigation.The study was financially supported by the Velux foundation, project number 1039, Switzerland. Additional lab work was funded by Tailwind grant of Eawag Switzerland. Open access funding was provided by Eawag–Swiss Federal Institute of Aquatic Science And Technology.Peer reviewe

    Influence of Microplastics on Microbial Structure, Function, and Mechanical Properties of Stream Periphyton

    Get PDF
    Periphyton is a freshwater biofilm composed of prokaryotic and eukaryotic communities that occupy rocks and sediments, forming the base of the food web and playing a key role in nutrient cycling. Given the large surface that periphyton comprises, it may also act as a sink for a diverse range of man-made pollutants, including microplastics (MP). Here we investigated the effect of 1-4 mu m and 63-75 mu m sized, spherical polyethylene MP with native and ultraviolet (UV)-weathered surface on developing natural stream periphyton communities over 28 days. In order to ensure proper particle exposure, we first tested MP suspension in water or in water containing either Tween 80, extracellular polymeric substances - EPS, fulvic acids, or protein. We found the extract of EPS from natural periphyton to be most suitable to create MP suspensions in preparation of exposure. Upon exposure, all tested types of MP were found to be associated with the periphyton, independent of their size and other properties. While biomass accrual and phenotypic community structure of the photoautotrophs remained unchanged, the prokaryotic and eukaryotic communities experienced a significant change in composition and relative abundances. Moreover, alpha diversity was affected in eukaryotes, but not in prokaryotes. The observed changes were more prominent in periphyton exposed to UV-treated as compared with native surface MP. Mechanical properties, as assessed by compression rheology, showed that MP-exposed periphyton had longer filamentous streamers, higher stiffness, lower force recovery and a higher viscoelasticity than control periphyton. Despite the observed structural and mechanical changes of periphyton, functional parameters (i.e., photosynthetic yield, respiration and nutrient uptake efficiencies) were not altered by MP, indicating the absence of MP toxicity, and suggesting functional redundancy in the communities. Together, our results provide further proof that periphyton is a sink for MP and demonstrate that MP can impact local microbial community composition and mechanical properties of the biofilms. Consequences of these findings might be a change in dislodgement behavior of periphyton, a propagation through the food chains and impacts on nutrient cycling and energy transfer. Hence, taking the omnipresence, high persistence and material and size diversity of MP in the aquatic environment into account, their ecological consequences need further investigation

    Wastewater treatment plant effluent inputs influence the temporal variability of nutrient uptake in an intermittent stream

    Get PDF
    Este artículo contiene 14 páginas, 5 figuras, 2 tablas.Wastewater treatment plant (WWTP) effluents alter water chemistry and in-stream nutrient uptake rates of receiving freshwaters, thus changing the magnitude and fate of the nutrients exported. In Mediterranean regions, the dilution capacity of receiving streams can vary strongly over time due to the seasonal occurrence of floods and droughts, causing temporal variability of nutrient uptake. We assessed the temporal patterns and the controlling factors of net nutrient uptake in an intermittent Mediterranean stream receiving WWTP effluent inputs. We compiled the longitudinal concentration profiles of ambient dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) along a 800 m reach on 47 sampling dates between 2001 and 2017, encompassing a wide range of hydrological conditions. We estimated net nutrient uptake in the receiving stream. In 72% of the dates, high rates of net ammonium uptake co-occurred with net releases of either nitrate or nitrite. This pattern suggests that the receiving stream has a high nitrification capacity. Conversely, 75% of the dates did not show any longitudinal pattern in SRP concentration, suggesting that uptake and release processes for this element were either counterbalanced or both occurred at very low rates. Finally, net ammonium uptake was low when the stream had a low dilution capacity (< 40%) and ammonium concentration was high. Overall, we demonstrate that consideration of the receiving stream’s dilution capacity is imperative to the management of freshwaters to guarantee an adequate dilution of WWTP effluent inputs and avoid saturation of in-stream nutrient uptake capacity under low flow conditions in urban landscapes.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This study was funded by the projects “EcoReactors” (PGC2018-101975-B C22), “CANTERA” (RTI2018- 094521-B-100) and “Fluvial P-removal” (PID2019-111803RB-I00) from I + D program of the Spanish Ministry of Science, Innovation, and Universities. AL was supported by the program Beatriu de Pinós (BP-2018–00082) from the Government of Catalonia and the European Commission. JLJL was supported by a Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2018, RIPARIONS ref: 834363). SB was supported by a Ramon y Cajal fellowship (RYC-2017–22643) from the Spanish Ministry of Science, Innovation, and Universities.Peer reviewe

    Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together

    Get PDF
    Ammonia oxidation is a fundamental core process in the global biogeochemical nitrogen cycle. Oxidation of ammonia (NH3) to nitrite (NO2 −) is the first and rate-limiting step in nitrification and is carried out by distinct groups of microorganisms. Ammonia oxidation is essential for nutrient turnover in most terrestrial, aquatic and engineered ecosystems and plays a major role, both directly and indirectly, in greenhouse gas production and environmental damage. Although ammonia oxidation has been studied for over a century, this research field has been galvanised in the past decade by the surprising discoveries of novel ammonia oxidising microorganisms. This review reflects on the ammonia oxidation research to date and discusses the major gaps remaining in our knowledge of the biology of ammonia oxidation

    Effect of temperature on rates of ammonium uptake and nitrification in the western coastal Arctic during winter, spring, and summer

    Get PDF
    Biogeochemical rate processes in the Arctic are not currently well constrained, and there is very limited information on how rates may change as the region warms. Here we present data on the sensitivity of ammonium (NH4+) uptake and nitrification rates to short-term warming. Samples were collected from the Chukchi Sea off the coast of Barrow, Alaska, during winter, spring, and summer and incubated for 24h in the dark with additions of (NH4+)-N-15 at -1.5, 6, 13, and 20 degrees C. Rates of NH4+ uptake and nitrification were measured in conjunction with bacterial production. In all seasons, NH4+ uptake rates were highest at temperatures similar to current summertime conditions but dropped off with increased warming, indicative of psychrophilic (i.e., cold-loving) microbial communities. In contrast, nitrification rates were less sensitive to temperature and were higher in winter and spring compared to summer. These findings suggest that as the Arctic coastal ecosystem continues to warm, NH4+ assimilation may become increasingly important, relative to nitrification, although the magnitude of NH4+ assimilation would be still be lower than nitrification

    Bringing methanotrophy in rivers out of the shadows

    Get PDF
    Methane oxidation produces biomass that is a potential source of particulate carbon for consumers, and is in addition to photosynthetic production. We assessed methanotrophy and photosynthetic production under differing conditions of light and methane concentration. We measured methane oxidation and photosynthesis in gravel sediments from adjacent shaded and unshaded stretches of 15 chalk rivers in southern England, and also in 30 artificial channels in which we manipulated light and methane experimentally. The capacity for methane oxidation was 78% higher in the shade than unshaded areas, indicating a denser, or more active, methanotrophic assemblage on shaded riverbeds, and the difference was most pronounced when methane concentration was high. Across the 15 rivers, methanotrophic production ranged from 16 to 650 nmol C cm−2 d−1 and net photosynthetic production from 256 to 35,750 nmol C cm−2 d−1. The relative importance of methanotrophy to their total production (i.e., photosynthetic and methanotrophic) increased with methane concentration and ranged from 0.1–2.4% and 0.2–13% in unshaded and shaded areas, respectively. Over an annual cycle in one river, the response of the methanotrophs in the shade to a high summer methane concentration was ∼ five times greater than in the open; in winter, there was no effect of shading on methane oxidation. The response of methanotrophy to shading and methane concentration in the artificial channels resembled that found in the rivers. Methanotrophy makes a non-negligible (here up to ∼ 13%) contribution to particulate carbon production in these streams, is disproportionately greater in the shade, and constitutes a distinct carbon pathway available for their food webs
    corecore