25 research outputs found

    Analyse zur Häufigkeit physiotherapeutischer Massnahmen bei kritisch kranken Patienten und deren möglicher Euinfluss auf die Mortalität: eine retrospektive Studie

    Get PDF
    Intention: Ziel dieser Studie war es, den Beginn und die Häufigkeit physiotherapeutischer Maßnahmen zu untersuchen und herauszufinden, ob ein möglicher Effekt auf die Mortalitätsrate von Patienten mit schwerer Sepsis oder septischem Schock existiert. Material und Methoden: In der retrospektiven Datenanalyse wurden deskriptive und statistische Tests verwendet. Dabei wurden Korrelations- und Cox-Regressionsanalysen durchgeführt. Ergebnisse: Im Beobachtungszeitraum von vier Jahren entwickelten 6,2 % der auf Intensivstation (ITS) aufgenommenen Patienten (n=999, mittlere Liegedauer 12 Tage, mittlerer SOFA Score 14) eine schwere Sepsis oder einen septischen Schock. Von diesen Patienten wurden 77 % mindestens einmal physiotherapeutisch behandelt. Die relative Anzahl physiotherapeutischer Maßnahmen (rel. PTM, absolute Anzahl physiotherapeutischer Maßnahmen/Liegedauer auf ITS) betrug 39 %. Im Mittel vergingen von Aufnahme auf die ITS bis zur ersten Behandlung vier Tage. Die Cox-Regressionsanalyse, adjustiert nach der Krankheitsschwere, Sedierungstiefe und anderen klinisch relevanten Variablen, brachten die rel. PTM als signifikanten Risikofaktor auf die ITS-Mortalitätsrate hervor (r = -0,023, Hazard Ratio 0,978, 95%-Konfidenzintervall 0,969 – 0,986, p < 0,001). Schlussfolgerung: Patienten mit schwerer Sepsis und septischem Schock wurden routinemäßig während ihres ITS-Aufenthaltes physiotherapeutisch behandelt. Die Häufigkeit physiotherapeutischer Maßnahmen war mit einer erhöhten Überlebensrate assoziiert. Prospektive Studien werden jedoch benötigt, um den gezeigten begünstigenden Effekt zu bestätigen

    Heteroarylketones inhibit astroglial interleukin-6 expression via a STAT3/NF-κB signaling pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated brain levels of the pleiotropic cytokine interleukin-6, which is mainly secreted from activated local astrocytes, contribute to pathological events including neuroinflammation and neurodegeneration. Thus, inhibition of pathological IL-6 expression provides a rationale strategy for targeting the onset or further progression of neurological disorders including Alzheimer's disease, multiple sclerosis, Parkinson's disease and traumatic brain injury. The purpose of this study was to identify and to characterize new potent inhibitors of astrocytic IL-6 expression for further therapeutic development of novel anti-inflammatory and neuroprotective drugs.</p> <p>Methods</p> <p>Oncostatin M (OSM)-treated human glioma U343 cells were used as model for induction of astrocytic IL-6 expression. This model was characterized by immunoblotting, siRNA technique, ELISA and qRT-PCR and used to screen low molecular weight compound libraries for IL-6-lowering effects. To validate bioactive compounds identified from library screens, bacterial lipopolysaccharide was used to induce IL-6 expression in cultivated primary astrocytes and in mice <it>in vivo</it>. To dissect underlying molecular mechanisms, protein extracts from OSM-treated U343 cells were analyzed by phospho-specific immunoblotting and immunocytochemistry as well as by co-immunoprecipitation.</p> <p>Results</p> <p>OSM-treatment (100 ng/ml; 24 h) led to 30-fold increase of IL-6 secretion from U343 cells. The temporal profile of IL-6 mRNA induction displayed a biphasic induction pattern with peak synthesis at 1 h (6.5-fold) and 16 h (5.5-fold) post stimulation. IL-6 protein release did not show that biphasic pattern and was detected as early as 3 h post stimulation reaching a maximum at 24 h. The screen of compound libraries identified a set of heteroarylketones (HAKs) as potent inhibitors of IL-6 secretion. HAK compounds affected the second peak in IL-6 mRNA synthesis, whereas the first peak was insensitive to HAK treatment. HAK compounds also suppressed lipopolysaccharide-induced IL-6 expression in primary murine astrocytes as well as in brain and plasma samples from lipopolysaccharide-treated mice. Finally, HAK compounds were demonstrated to specifically suppress the OSM-induced phosphorylation of STAT3 at serine 727 and the physical interaction of pSTAT3<sup>S727 </sup>with p65.</p> <p>Conclusion</p> <p>Heteroarylketone compounds are potent inhibitors of IL-6 expression <it>in vitro </it>and <it>in vivo </it>and may represent a new class of potent anti-inflammatory and neuroprotective drugs.</p

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Bovine blood derived macrophages are unable to control replication under hypoxic conditions

    Get PDF
    Background: Coxiella burnetii is a zoonotic pathogen, infecting humans, livestock, pets, birds and ticks. Domestic ruminants such as cattle, sheep, and goats are the main reservoir and major cause of human infection. Infected ruminants are usually asymptomatic, while in humans infection can cause significant disease. Human and bovine macrophages differ in their permissiveness for C. burnetii strains from different host species and of various genotypes and their subsequent host cell response, but the underlying mechanism(s) at the cellular level are unknown. Methods: C. burnetii infected primary human and bovine macrophages under normoxic and hypoxic conditions were analyzed for (i) bacterial replication by CFU counts and immunofluorescence; (ii) immune regulators by westernblot and qRT-PCR; cytokines by ELISA; and metabolites by gas chromatography-mass spectrometry (GC-MS). Results: Here, we confirmed that peripheral blood-derived human macrophages prevent C. burnetii replication under oxygen-limiting conditions. In contrast, oxygen content had no influence on C. burnetii replication in bovine peripheral blood-derived macrophages. In hypoxic infected bovine macrophages, STAT3 is activated, even though HIF1α is stabilized, which otherwise prevents STAT3 activation in human macrophages. In addition, the TNFα mRNA level is higher in hypoxic than normoxic human macrophages, which correlates with increased secretion of TNFα and control of C. burnetii replication. In contrast, oxygen limitation does not impact TNFα mRNA levels in C. burnetii-infected bovine macrophages and secretion of TNFα is blocked. As TNFα is also involved in the control of C. burnetii replication in bovine macrophages, this cytokine is important for cell autonomous control and its absence is partially responsible for the ability of C. burnetii to replicate in hypoxic bovine macrophages. Further unveiling the molecular basis of macrophage-mediated control of C. burnetii replication might be the first step towards the development of host directed intervention measures to mitigate the health burden of this zoonotic agent

    Trophic look at soft-bottom communities — Short-term effects of trawling cessation on benthos

    Get PDF
    The trophic structure of the German Bight soft-bottom benthic community was evaluated for potential changes after cessation of bottom trawling. Species were collected with van-Veen grabs and beam trawls. Trophic position (i.e. nitrogen stable isotope ratios, δ15N) and energy flow (i.e. species metabolism approximated by body mass scaled abundance) of dominant species were compared in trawled areas and an area protected from fisheries for 14 months in order to detect trawling cessation effects by trophic characteristics. At the community level, energy flow was lower in the protected area, but we were unable to detect significant changes in trophic position. At the species level energy flow in the protected area was lower for predating/scavenging species but higher for interface feeders. Species trophic positions of small predators/scavengers were lower and of deposit feeders higher in the protected area. Major reasons for trophic changes after trawling cessation may be the absence of artificial and additional food sources from trawling likely to attract predators and scavengers, and the absence of physical sediment disturbance impacting settlement/survival of less mobile species and causing a gradual shift in food availability and quality. Our results provide evidence that species or community energy flow is a good indicator to detect trawling induced energy-flow alterations in the benthic system, and that in particular species trophic properties are suitable to capture subtle and short-term changes in the benthos following trawling cessation
    corecore