23 research outputs found

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    CCS Public Perception Learnings Applied to Brazil

    Get PDF
    Carbon Capture and Storage (CCS) is considered a relevant technology to deal with climate change mitigation. However, the technology is not yet known to the various audiences, be it by the government and legislators, by industry, by academia, by media, or by society, which are far from being aware of such technologies and their impacts. This paper aims to discuss the Brazilian citizens' public perception of onshore and offshore CCS projects. Based on the international literature on CCS public perception and a few studies conducted in the Brazilian context, some highlights and recommendations are drawn. The results show Brazil as a vast country of significant diversity and inequality that requires research approaches covering local, regional and national dimensions. A substantial part of the Brazilian population believes that global warming is happening and demands immediate mitigation actions. Such a mindset could be favourable to accept CCS projects as one of the possible solutions.publishedVersio

    Experimental investigation of flow-induced vibration on isolated and tandem circular cylinders fitted with strakes

    No full text
    The effect of varying the geometric parameters of helical strakes on vortex-induced vibration (VIV) is investigated in this paper. The degree of oscillation attenuation or even suppression is analysed for isolated circular cylinder cases. How a cylinder fitted with strakes behaves when immersed in the wake of another cylinder in tandem arrangement is also investigated and these results are compared to those with a single straked cylinder. The experimental tests are conducted at a circulating water channel facility and the cylindrical models are mounted on a low-damping air bearing elastic base with one degree-of-freedom, restricted to oscillate in the transverse direction to the channel flow. Three strake pitches (p) and heights (h) are tested: p = 5, 10, 15d, and h = 0.1, 0.2, 0.25d. The mass ratio is 1.8 for all models. The Reynolds number range is from 1000 to 10000, and the reduced velocity varies up to 21. The cases with h = 0.1d strakes reduce the amplitude response when compared to the isolated plain cylinder, however the oscillation still persists. On the other hand, the cases with h = 0.2, 0.25d strakes almost completely suppress VIV. Spanwise vorticity fields, obtained through stereoscopic digital particle image velocimetry (SDPIV), show an alternating vortex wake for the p = 10d and h = 0.1d straked cylinder. The p = 10d and h = 0.2d cylinder wake has separated shear layers with constant width and no roll-up close to the body. The strakes do not increase the magnitude of the out-of-plane velocity compared to the isolated plain cylinder. However, they deflect the flow in the out-of-plane direction in a controlled way, which can prevent the vortex shedding correlation along the span. In order to investigate the wake interference effect on the strake efficiency, an experimental arrangement with two cylinders in tandem is employed. The centre-to-centre distance for the tandem arrangement varies from 2 to 6. When the downstream p = 10d and h = 0.2d cylinder is immersed in the wake of an upstream fixed plain cylinder, it loses its effectiveness compared with the isolated case. Although the oscillations have significant amplitude, they are limited, which is a different behaviour from that of a tandem configuration with two plain cylinders. For this particular case, the amplitude response monotonically increases for all gaps, except one, a trait usually found in galloping-like oscillations. SDPIV results for the tandem arrangements show alternating vortex shedding and oscillatory wake. (C) 2010 Elsevier Ltd. All rights reserved.BZGFINEP-CTPetroCNPqPetrobrasFAPES

    Volumetric reconstruction of the mean flow around circular cylinders fitted with strakes

    No full text
    The volumetric reconstruction technique presented in this paper employs a two-camera stereoscopic particle image velocimetry (SPIV) system in order to reconstruct the mean flow behind a fixed cylinder fitted with helical strakes, which are commonly used to suppress vortex-induced vibrations (VIV). The technique is based on the measurement of velocity fields at equivalent adjacent planes that results in pseudo volumetric fields. The main advantage over proper volumetric techniques is the avoidance of additional equipment and complexity. The averaged velocity fields behind the straked cylinders and the geometrical periodicity of the three-start configuration are used to further simplify the reconstruction process. Two straked cylindrical models with the same pitch (p = 10d) and two different heights (h = 0.1 and 0.2d) are tested. The reconstructed flow shows that the strakes introduce in the wake flow a well-defined wavelength of one-third of the pitch. Measurements of hydrodynamic forces, fluctuating velocity, vortex formation length, and vortex shedding frequency show the interdependence of the wake parameters. The vortex formation length is increased by the strakes, which is an important effect for the suppression of vortex-induced vibrations. The results presented complement previous investigations concerning the effectiveness of strakes as VIV suppressors and provide a basis of comparison to numerical simulations.FINEP-CTPetroCNPqPetrobrasFAPES

    CCS Public Perception Learnings Applied to Brazil

    Get PDF
    Carbon Capture and Storage (CCS) is considered a relevant technology to deal with climate change mitigation. However, the technology is not yet known to the various audiences, be it by the government and legislators, by industry, by academia, by media, or by society, which are far from being aware of such technologies and their impacts. This paper aims to discuss the Brazilian citizens' public perception of onshore and offshore CCS projects. Based on the international literature on CCS public perception and a few studies conducted in the Brazilian context, some highlights and recommendations are drawn. The results show Brazil as a vast country of significant diversity and inequality that requires research approaches covering local, regional and national dimensions. A substantial part of the Brazilian population believes that global warming is happening and demands immediate mitigation actions. Such a mindset could be favourable to accept CCS projects as one of the possible solutions

    Efficient CH4/CO2 Gas Mixture Separation through Nanoporous Graphene Membrane Designs

    No full text
    Nanoporous graphene membranes have drawn special attention in the gas-separation processes due to their unique structure and properties. The complexity of the physical understanding of such membrane designs restricts their widespread use for gas-separation applications. In the present study, we strive to propose promising designs to face this technical challenge. In this regard, we investigated the permeation and separation of the mixture of adsorptive gases CO2 and CH4 through a two-stage bilayer sub-nanometer porous graphene membrane design using molecular dynamics simulation. A CH4/CO2 gashouse mixture with 80 mol% CH4 composition was generated using the benchmarked force-fields and was forced to cross through the porous graphene membrane design by a constant piston velocity. Three chambers are considered to be feeding, transferring, and capturing to examine the permeation and separation of molecules under the effect of the two-stage membrane. The main objective is to investigate the multistage membrane and bilayer effect simultaneously. The permeation and separation of the CO2 and CH4 molecules while crossing through the membrane are significantly influenced by the pore offset distance (W) and the interlayer spacing (H) of the bilayer nanoporous graphene membrane. Linear configurations (W = 0 Å) and those with the offset distance of 10 Å and 20 Å were examined by varying the interlayer spacing between 8 Å, 12 Å, and 16 Å. The inline configuration with an interlayer spacing of 12 Å is the most effective design among the examined configurations in terms of optimum separation performance and high CO2 and CH4 permeability. Furthermore, increasing the interlayer distance to 16 Å results in bulk-like behavior rather than membrane-like behavior, indicating the optimum parameters for high selectivity and permeation. Our findings present an appropriate design for the effective separation of CH4/CO2 gas mixtures by testing novel nanoporous graphene configurations
    corecore