1,734 research outputs found
Loop Quantum Gravity and the The Planck Regime of Cosmology
The very early universe provides the best arena we currently have to test
quantum gravity theories. The success of the inflationary paradigm in
accounting for the observed inhomogeneities in the cosmic microwave background
already illustrates this point to a certain extent because the paradigm is
based on quantum field theory on the curved cosmological space-times. However,
this analysis excludes the Planck era because the background space-time
satisfies Einstein's equations all the way back to the big bang singularity.
Using techniques from loop quantum gravity, the paradigm has now been extended
to a self-consistent theory from the Planck regime to the onset of inflation,
covering some 11 orders of magnitude in curvature. In addition, for a narrow
window of initial conditions, there are departures from the standard paradigm,
with novel effects, such as a modification of the consistency relation
involving the scalar and tensor power spectra and a new source for
non-Gaussianities. Thus, the genesis of the large scale structure of the
universe can be traced back to quantum gravity fluctuations \emph{in the Planck
regime}. This report provides a bird's eye view of these developments for the
general relativity community.Comment: 23 pages, 4 figures. Plenary talk at the Conference: Relativity and
Gravitation: 100 Years after Einstein in Prague. To appear in the Proceedings
to be published by Edition Open Access. Summarizes results that appeared in
journal articles [2-13
Rapid tests and urine sampling techniques for the diagnosis of urinary tract infection (UTI) in children under five years: a systematic review
Background: Urinary tract infection (UTI) is one of the most common sources of infection in children under five. Prompt diagnosis and treatment is important to reduce the risk of renal scarring. Rapid, cost-effective, methods of UTI diagnosis are required as an alternative to culture. Methods: We conducted a systematic review to determine the diagnostic accuracy of rapid tests for detecting UTI in children under five years of age. Results: The evidence supports the use of dipstick positive for both leukocyte esterase and nitrite (pooled LR+ = 28.2, 95% CI: 17.3, 46.0) or microscopy positive for both pyuria and bacteriuria (pooled LR+ = 37.0, 95% CI: 11.0, 125.9) to rule in UTI. Similarly dipstick negative for both LE and nitrite (Pooled LR- = 0.20, 95% CI: 0.16, 0.26) or microscopy negative for both pyuria and bacteriuria (Pooled LR- = 0.11, 95% CI: 0.05, 0.23) can be used to rule out UTI. A test for glucose showed promise in potty-trained children. However, all studies were over 30 years old. Further evaluation of this test may be useful. Conclusion: Dipstick negative for both LE and nitrite or microscopic analysis negative for both pyuria and bacteriuria of a clean voided urine, bag, or nappy/pad specimen may reasonably be used to rule out UTI. These patients can then reasonably be excluded from further investigation, without the need for confirmatory culture. Similarly, combinations of positive tests could be used to rule in UTI, and trigger further investigation
An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll-a based models
We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll-a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed-layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite-derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low-productivity seasons as well as in sea ice-covered/deep-water regions. Depth-resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption-based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll-a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic-relevant parameters
Taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism
Objective: To evaluate the taxonomic composition of the gut microbiome in gout patients with and without tophi
formation, and predict bacterial functions that might have an impact on urate metabolism.
Methods: Hypervariable V3âV4 regions of the bacterial 16S rRNA gene from fecal samples of gout patients with
and without tophi (n=33 and n=25, respectively) were sequenced and compared to fecal samples from 53 healthy
controls. We explored predictive functional profles using bioinformatics in order to identify diferences in taxonomy
and metabolic pathways.
Results: We identifed a microbiome characterized by the lowest richness and a higher abundance of Phascolarctobacterium, Bacteroides, Akkermansia, and Ruminococcus_gnavus_group genera in patients with gout without tophi
when compared to controls. The Proteobacteria phylum and the Escherichia-Shigella genus were more abundant
in patients with tophaceous gout than in controls. Fold change analysis detected nine genera enriched in healthy
controls compared to gout groups (Bifdobacterium, Butyricicoccus, Oscillobacter, Ruminococcaceae_UCG_010, Lachnospiraceae_ND2007_group, Haemophilus, Ruminococcus_1, Clostridium_sensu_stricto_1, and Ruminococcaceae_
UGC_013). We found that the core microbiota of both gout groups shared Bacteroides caccae, Bacteroides stercoris ATCC
43183, and Bacteroides coprocola DSM 17136. These bacteria might perform functions linked to one-carbon metaboâ
lism, nucleotide binding, amino acid biosynthesis, and purine biosynthesis. Finally, we observed diferences in key
bacterial enzymes involved in urate synthesis, degradation, and elimination.
Conclusion: Our fndings revealed that taxonomic variations in the gut microbiome of gout patients with and withâ
out tophi might have a functional impact on urate metabolism.
Keywords: Gout, Gut microbiota, Uric acid metabolis
Design and Synthesis of Potent in Vitro and in Vivo Anticancer Agents Based on 1-(3âČ,4âČ,5âČ-Trimethoxyphenyl)-2-Aryl-1H-Imidazole
A novel series of tubulin polymerization inhibitors, based on the 1-(3',4',5'-trimethoxyphenyl)-2-aryl-1H-imidazole scaffold and designed as cis-restricted combretastatin A-4 analogues, was synthesized with the goal of evaluating the effects of various patterns of substitution on the phenyl at the 2-position of the imidazole ring on biological activity. A chloro and ethoxy group at the meta- and para-positions, respectively, produced the most active compound in the series (4o), with IC50 values of 0.4-3.8ânM against a panel of seven cancer cell lines. Except in HL-60 cells, 4o had greater antiproliferative than CA-4, indicating that the 3'-chloro-4'-ethoxyphenyl moiety was a good surrogate for the CA-4 B-ring. Experiments carried out in a mouse syngenic model demonstrated high antitumor activity of 4o, which significantly reduced the tumor mass at a dose thirty times lower than that required for CA-4P, which was used as a reference compound. Altogether, our findings suggest that 4o is a promising anticancer drug candidate that warrants further preclinical evaluation
Multi-Wavelength Observations of the Blazar 1ES 1011+496 in Spring 2008
The BL Lac object 1ES 1011+496 was discovered at Very High Energy gamma-rays
by MAGIC in spring 2007. Before that the source was little studied in different
wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in
spring 2008. Along MAGIC, the MWL campaign included the Metsahovi radio
observatory, Bell and KVA optical telescopes and the Swift and AGILE
satellites. MAGIC observations span from March to May, 2008 for a total of 27.9
hours, of which 19.4 hours remained after quality cuts. The light curve showed
no significant variability. The differential VHE spectrum could be described
with a power-law function. Both results were similar to those obtained during
the discovery. Swift XRT observations revealed an X-ray flare, characterized by
a harder when brighter trend, as is typical for high synchrotron peak BL Lac
objects (HBL). Strong optical variability was found during the campaign, but no
conclusion on the connection between the optical and VHE gamma-ray bands could
be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike
concluded in previous work based on nonsimultaneous data, and is well described
by a standard one zone synchrotron self Compton model. We also performed a
study on the source classification. While the optical and X-ray data taken
during our campaign show typical characteristics of an HBL, we suggest, based
on archival data, that 1ES 1011+496 is actually a borderline case between
intermediate and high synchrotron peak frequency BL Lac objects.Comment: 13 pages, accepted for publication in MNRA
Observation of Pulsed Gamma-rays Above 25 GeV from the Crab Pulsar with MAGIC
One fundamental question about pulsars concerns the mechanism of their pulsed
electromagnetic emission. Measuring the high-end region of a pulsar's spectrum
would shed light on this question. By developing a new electronic trigger, we
lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov
(MAGIC) telescope to 25 GeV. In this configuration, we detected pulsed
gamma-rays from the Crab pulsar that were greater than 25 GeV, revealing a
relatively high cutoff energy in the phase-averaged spectrum. This indicates
that the emission occurs far out in the magnetosphere, hence excluding the
polar-cap scenario as a possible explanation of our measurement. The high
cutoff energy also challenges the slot-gap scenario.Comment: Slight modification of the analysis: Fitting a more general function
to the combined data set of COMPTEL, EGRET and MAGIC. Final result and
conclusion is unchange
Measurements of the properties of Lambda_c(2595), Lambda_c(2625), Sigma_c(2455), and Sigma_c(2520) baryons
We report measurements of the resonance properties of Lambda_c(2595)+ and
Lambda_c(2625)+ baryons in their decays to Lambda_c+ pi+ pi- as well as
Sigma_c(2455)++,0 and Sigma_c(2520)++,0 baryons in their decays to Lambda_c+
pi+/- final states. These measurements are performed using data corresponding
to 5.2/fb of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV,
collected with the CDF II detector at the Fermilab Tevatron. Exploiting the
largest available charmed baryon sample, we measure masses and decay widths
with uncertainties comparable to the world averages for Sigma_c states, and
significantly smaller uncertainties than the world averages for excited
Lambda_c+ states.Comment: added one reference and one table, changed order of figures, 17
pages, 15 figure
Atomic Scale Modelling of Two-Dimensional Molecular Self-Assembly on a Passivated Si Surface
International audienceThe self-assembly of two-dimensional (2D) molecular structures on a solid surface relies on the subtle balance between non covalent intermolecular and molecule-surface forces. The energetics of 2D molecular lattices forming different patterns on a passivated semiconductor surface are here investigated by a combination of atomistic simulation methods. Density-functional theory provides structure and charges of the molecules, while metadynamics with empirical forces provides a best guess for the lowest-energy adsorption sites of single molecules and dimers. Subsequently, molecular dynamics simulations of extended molecular assemblies with empirical forces yield the most favorable lattice structures at finite temperature and pressure.The theoretical results are in good agreement with scanning tunneling microscopy observations of self-assembled molecular monolayers on a B-doped Si(111) surface, thus allowing to rationalize the competition of long-range dispersion forces between the molecules and the surface. Such a result demonstrates the interest of this predictive approach for further progress in supramolecular chemistry on semiconductor surface
Search for a New Heavy Gauge Boson Wprime with Electron + missing ET Event Signature in ppbar collisions at sqrt(s)=1.96 TeV
We present a search for a new heavy charged vector boson decaying
to an electron-neutrino pair in collisions at a center-of-mass
energy of 1.96\unit{TeV}. The data were collected with the CDF II detector
and correspond to an integrated luminosity of 5.3\unit{fb}^{-1}. No
significant excess above the standard model expectation is observed and we set
upper limits on . Assuming standard
model couplings to fermions and the neutrino from the boson decay to
be light, we exclude a boson with mass less than
1.12\unit{TeV/}c^2 at the 95\unit{%} confidence level.Comment: 7 pages, 2 figures Submitted to PR
- âŠ