1,148 research outputs found

    The early history of protostellar disks, outflows, and binary stars

    Full text link
    In star formation, magnetic fields act as a cosmic angular momentum extractor that increases mass accretion rates onto protostars and in the process, creates spectacular outflows. However, recently it has been argued that this magnetic brake is so strong that early protostellar disks -- the cradles of planet formation -- cannot form. Our three-dimensional numerical simulations of the early stages of collapse (\lesssim 10^5 yr) of overdense star--forming clouds form early outflows and have magnetically regulated and rotationally dominated disks (inside 10 AU) with high accretion rates, despite the slip of the field through the mostly neutral gas. We find that in three dimensions, magnetic fields suppress gravitationally driven instabilities which would otherwise prevent young, well ordered disks from forming. Our simulations have surprising consequences for the early formation of disks, their density and temperature structure, the mechanism and structure of early outflows, the flash heating of dust grains through ambipolar diffusion, and the origin of planets and binary stars.Comment: 12 pages, 3 figures, accepted by ApJ Letters; corrected text to match journal version; movies can be found at http://www.physics.mcmaster.ca/~duffindf/movies.htm

    Data calibration for the MASCARA and bRing instruments

    Get PDF
    Aims: MASCARA and bRing are photometric surveys designed to detect variability caused by exoplanets in stars with mV<8.4m_V < 8.4. Such variability signals are typically small and require an accurate calibration algorithm, tailored to the survey, in order to be detected. This paper presents the methods developed to calibrate the raw photometry of the MASCARA and bRing stations and characterizes the performance of the methods and instruments. Methods: For the primary calibration a modified version of the coarse decorrelation algorithm is used, which corrects for the extinction due to the earth's atmosphere, the camera transmission, and intrapixel variations. Residual trends are removed from the light curves of individual stars using empirical secondary calibration methods. In order to optimize these methods, as well as characterize the performance of the instruments, transit signals were injected in the data. Results: After optimal calibration an RMS scatter of 10 mmag at mV∌7.5m_V \sim 7.5 is achieved in the light curves. By injecting transit signals with periods between one and five days in the MASCARA data obtained by the La Palma station over the course of one year, we demonstrate that MASCARA La Palma is able to recover 84.0, 60.5 and 20.7% of signals with depths of 2, 1 and 0.5% respectively, with a strong dependency on the observed declination, recovering 65.4% of all transit signals at ÎŽ>0∘\delta > 0^\circ versus 35.8% at ÎŽ<0∘\delta < 0^\circ. Using the full three years of data obtained by MASCARA La Palma to date, similar recovery rates are extended to periods up to ten days. We derive a preliminary occurrence rate for hot Jupiters around A-stars of >0.4%{>} 0.4 \%, knowing that many hot Jupiters are still overlooked. In the era of TESS, MASCARA and bRing will provide an interesting synergy for finding long-period (>13.5{>} 13.5 days) transiting gas-giant planets around the brightest stars.Comment: 18 pages, 17 figures, accepted for publication in A&

    Constraining the period of the ringed secondary companion to the young star J1407 with photographic plates

    Get PDF
    Context. The 16 Myr old star 1SWASP J140747.93-394542.6 (V1400 Cen) underwent a series of complex eclipses in May 2007, interpreted as the transit of a giant Hill sphere filling debris ring system around a secondary companion, J1407b. No other eclipses have since been detected, although other measurements have constrained but not uniquely determined the orbital period of J1407b. Finding another eclipse towards J1407 will help determine the orbital period of the system, the geometry of the proposed ring system and enable planning of further observations to characterize the material within these putative rings. Aims. We carry out a search for other eclipses in photometric data of J1407 with the aim of constraining the orbital period of J1407b. Methods. We present photometry from archival photographic plates from the Harvard DASCH survey, and Bamberg and Sonneberg Observatories, in order to place additional constraints on the orbital period of J1407b by searching for other dimming and eclipse events. Using a visual inspection of all 387 plates and a period-folding algorithm we performed a search for other eclipses in these data sets. Results. We find no other deep eclipses in the data spanning from 1890 to 1990, nor in recent time-series photometry from 2012-2018. Conclusions. We rule out a large fraction of putative orbital periods for J1407b from 5 to 20 years. These limits are still marginally consistent with a large Hill sphere filling ring system surrounding a brown dwarf companion in a bound elliptical orbit about J1407. Issues with the stability of any rings combined with the lack of detection of another eclipse, suggests that J1407b may not be bound to J1407.Comment: 8 pages, 3 tables, 4 figures, accepted for publication in A&A. LaTeX files of the paper, scripts for the figures, and a minimal working FPA can be found under https://github.com/robinmentel/Constraining-Period

    The Protostellar Luminosity Function

    Full text link
    The protostellar luminosity function (PLF) is the present-day luminosity function of the protostars in a region of star formation. It is determined using the protostellar mass function (PMF) in combination with a stellar evolutionary model that provides the luminosity as a function of instantaneous and final stellar mass. As in McKee & Offner (2010), we consider three main accretion models: the Isothermal Sphere model, the Turbulent Core model, and an approximation of the Competitive Accretion model. We also consider the effect of an accretion rate that tapers off linearly in time and an accelerating star formation rate. For each model, we characterize the luminosity distribution using the mean, median, maximum, ratio of the median to the mean, standard deviation of the logarithm of the luminosity, and the fraction of very low luminosity objects. We compare the models with bolometric luminosities observed in local star forming regions and find that models with an approximately constant accretion time, such as the Turbulent Core and Competitive Accretion models, appear to agree better with observation than those with a constant accretion rate, such as the Isothermal Sphere model. We show that observations of the mean protostellar luminosity in these nearby regions of low-mass star formation suggest a mean star formation time of 0.3±\pm0.1 Myr. Such a timescale, together with some accretion that occurs non-radiatively and some that occurs in high-accretion, episodic bursts, resolves the classical "luminosity problem" in low-mass star formation, in which observed protostellar luminosities are significantly less than predicted. An accelerating star formation rate is one possible way of reconciling the observed star formation time and mean luminosity.Comment: 22 pages, 9 figures, accepted to Ap

    Hubble Space Telescope NICMOS Polarization Observations of Three Edge-on Massive YSOs

    Full text link
    Massive young stellar objects (YSOs), like low-mass YSOs, appear to be surrounded by optically thick envelopes and/or disks and have regions, often bipolar, that are seen in polarized scattered light at near-infrared wavelengths. We are using the 0.2'' spatial resolution of NICMOS on Hubble Space Telescope to examine the structure of the disks and outflow regions of massive YSOs in star-forming regions within a few kpc of the Sun. Here we report on 2 micron polarimetry of NGC 6334 V and S255 IRS1. NGC 6334 V consists of a double-lobed bright reflection nebula seen against a dark region, probably an optically thick molecular cloud. Our polarization measurements show that the illuminating star lies ~ 2'' south of the line connecting the two lobes; we do not detect this star at 2 micron, but there are a small radio source and a mid-infrared source at this location. S255 IRS1 consists of two YSOs (NIRS1 and NIRS3) with overlapping scattered light lobes and luminosities corresponding to early B stars. Included in IRS1 is a cluster of stars from whose polarization we determine the local magnetic field direction. Neither YSO has its scattered light lobes aligned with this magnetic field. The line connecting the scattered light lobes of NIRS1 is twisted symmetrically around the star; the best explanation is that the star is part of a close binary and the outflow axis of NIRS1 is precessing as a result of non-coplanar disk and orbit. The star NIRS3 is also offset from the line connecting its two scattered light lobes. We suggest that all three YSOs show evidence of episodic ejection of material as they accrete from dense, optically thick envelopes.Comment: 39 pages, 7 figures, 4 tables To be published in The Astrophysical Journa

    KELT-7b: A hot Jupiter transiting a bright V=8.54 rapidly rotating F-star

    Get PDF
    We report the discovery of KELT-7b, a transiting hot Jupiter with a mass of 1.28±0.181.28 \pm 0.18 MJ, radius of 1.53−0.047+0.0461.53_{-0.047}^{+0.046} RJ, and an orbital period of 2.7347749±0.00000392.7347749 \pm 0.0000039 days. The bright host star (HD33643; KELT-7) is an F-star with V=8.54V=8.54, Teff =6789−49+50=6789_{-49}^{+50} K, [Fe/H] =0.139−0.081+0.075=0.139_{-0.081}^{+0.075}, and log⁥g=4.149±0.019\log{g}=4.149 \pm 0.019. It has a mass of 1.535−0.054+0.0661.535_{-0.054}^{+0.066} Msun, a radius of 1.732−0.045+0.0431.732_{-0.045}^{+0.043} Rsun, and is the fifth most massive, fifth hottest, and the ninth brightest star known to host a transiting planet. It is also the brightest star around which KELT has discovered a transiting planet. Thus, KELT-7b is an ideal target for detailed characterization given its relatively low surface gravity, high equilibrium temperature, and bright host star. The rapid rotation of the star (73±0.573 \pm 0.5 km/s) results in a Rossiter-McLaughlin effect with an unusually large amplitude of several hundred m/s. We find that the orbit normal of the planet is likely to be well-aligned with the stellar spin axis, with a projected spin-orbit alignment of λ=9.7±5.2\lambda=9.7 \pm 5.2 degrees. This is currently the second most rapidly rotating star to have a reflex signal (and thus mass determination) due to a planetary companion measured.Comment: Accepted to The Astronomical Journa

    Water induced sediment levitation enhances downslope transport on Mars

    Get PDF
    On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: “levitation” of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought
    • 

    corecore