The protostellar luminosity function (PLF) is the present-day luminosity
function of the protostars in a region of star formation. It is determined
using the protostellar mass function (PMF) in combination with a stellar
evolutionary model that provides the luminosity as a function of instantaneous
and final stellar mass. As in McKee & Offner (2010), we consider three main
accretion models: the Isothermal Sphere model, the Turbulent Core model, and an
approximation of the Competitive Accretion model. We also consider the effect
of an accretion rate that tapers off linearly in time and an accelerating star
formation rate. For each model, we characterize the luminosity distribution
using the mean, median, maximum, ratio of the median to the mean, standard
deviation of the logarithm of the luminosity, and the fraction of very low
luminosity objects. We compare the models with bolometric luminosities observed
in local star forming regions and find that models with an approximately
constant accretion time, such as the Turbulent Core and Competitive Accretion
models, appear to agree better with observation than those with a constant
accretion rate, such as the Isothermal Sphere model. We show that observations
of the mean protostellar luminosity in these nearby regions of low-mass star
formation suggest a mean star formation time of 0.3±0.1 Myr. Such a
timescale, together with some accretion that occurs non-radiatively and some
that occurs in high-accretion, episodic bursts, resolves the classical
"luminosity problem" in low-mass star formation, in which observed protostellar
luminosities are significantly less than predicted. An accelerating star
formation rate is one possible way of reconciling the observed star formation
time and mean luminosity.Comment: 22 pages, 9 figures, accepted to Ap