1,364 research outputs found

    Non-equilibrium Green's function approach to inhomogeneous quantum many-body systems using the Generalized Kadanoff Baym Ansatz

    Full text link
    In non-equilibrium Green's function calculations the use of the Generalized Kadanoff-Baym Ansatz (GKBA) allows for a simple approximate reconstruction of the two-time Green's function from its time-diagonal value. With this a drastic reduction of the computational needs is achieved in time-dependent calculations, making longer time propagation possible and more complex systems accessible. This paper gives credit to the GKBA that was introduced 25 years ago. After a detailed derivation of the GKBA, we recall its application to homogeneous systems and show how to extend it to strongly correlated, inhomogeneous systems. As a proof of concept, we present results for a 2-electron quantum well, where the correct treatment of the correlated electron dynamics is crucial for the correct description of the equilibrium and dynamic properties

    Fluid Modes of a Spherically Confined Yukawa Plasma

    Full text link
    The normal modes of a three-dimensional Yukawa plasma in an isotropic, harmonic confinement are investigated by solving the linearized cold fluid equations. The eigenmodes are found analytically and expressed in terms of hypergeometric functions. It is found that the mode frequencies solely depend on the dimensionless plasma parameter ξ=κR\xi=\kappa R, where RR is the plasma radius and κ\kappa the inverse screening length. The eigenfrequencies increase monotonically with ξ\xi and saturate in the limit ξ→∞\xi\to\infty. Compared with the results in the Coulomb limit~[D. H. E. Dubin, Phys. Rev. Lett. \textbf{66}, 2076 (1991)], we find a new class of modes characterized by the number nn which determines the number of radial nodes in the perturbed potential. These modes originate from the degenerate bulk modes of the Coulomb system. Analytical formulas for the eigenfrequencies are derived for limiting cases

    Ground state of a confined Yukawa plasma

    Get PDF
    The ground state of an externally confined one-component Yukawa plasma is derived analytically. In particular, the radial density profile is computed. The results agree very well with computer simulations on three-dimensional spherical Coulomb crystals. We conclude in presenting an exact equation for the density distribution for a confinement potential of arbitrary geometry.Comment: 5 pages, 4 figure
    • …
    corecore