1,821 research outputs found

    Carbon Dioxide Angiography in Lower Limbs: A Prospective Comparative Study With Selective Iodinated Contrast Angiography

    Get PDF
    This was a prospective comparison of the accuracy and image quality of carbon dioxide digital subtraction angiography (CO2 DSA) and iodinated contrast digital subtraction angiography (ICDSA) in evaluating lower extremity arteries and patient tolerance of the procedures. Selective DSA was performed in 14 Taiwanese patients who were diagnosed with peripheral artery occlusive disease (PAOD). Both contrast materials were administered through mechanical injectors. Post-processing of the image used pixel shifting. Images of vessels were divided into 22 anatomic segments and evaluated by two experienced radiologists. A four-point scale was used to classify diseased vessels. Two interpreters rated the CO2 DSA image against the ICDSA image on a three-point scale. Patient tolerance was assessed from verbal descriptions. Cohen's kappa was used to determine interobserver agreement and descriptive statistics were used to summarize patient experience. Interobserver agreement ranged from fair to excellent, with most being good or excellent. Three patients (21.4%) could not tolerate the whole procedure and nine patients (64.3%) reported discomfort during the CO2 DSA procedure. CO2 DSA image quality was better for the thigh than the distal runoff and pelvic regions. Our results showed that selective CO2 DSA cannot replace ICDSA as a routine diagnostic tool for PAOD because it does not give images of comparative quality

    Marked Individual Variation in Isoflavone Metabolism After a Soy Challenge Can Modulate the Skeletal Effect of Isoflavones in Premenopausal Women

    Get PDF
    Soy-isoflavones may act as estrogenic agonists or antagonists depending on the endogenous hormone status. These clinical effects can be exerted variably in individuals by the metabolic ability to produce a more potent metabolite than precursors. The objective of this randomized, double-blind, placebo-controlled study was to investigate the skeletal effect of isoflavones according to their metabolic variability in premenopausal women. Volunteers were randomly assigned to receive either soy-extract isoflavones (n=32) or lactose (n=21) once a day for three menstrual cycles. After intervention, the urinary excretions of isoflavones and their metabolites were significantly higher in the soy group than in the placebo group and showed a large inter-individual variation. Women in the soy group were divided into subgroups according to their ability to excrete more potent metabolites. Serum osteocalcin and urine deoxypyridinoline showed a tendency to increase after a challenge in equol high-excretors. Serum osteocalcin concentration in the genistein high-excretors increased significantly after a challenge (P=0.04) but did not increase in either the placebo or genistein low-excretors. An estrogenic antagonistic effect of isoflavones on bone turnover was observed in premenopausal women who are able to produce more potent metabolites

    Current trends in drug metabolism and pharmacokinetics.

    Get PDF
    Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice

    Polygenic risk scores for prediction of breast cancer risk in Asian populations.

    Get PDF
    PURPOSE: Non-European populations are under-represented in genetics studies, hindering clinical implementation of breast cancer polygenic risk scores (PRSs). We aimed to develop PRSs using the largest available studies of Asian ancestry and to assess the transferability of PRS across ethnic subgroups. METHODS: The development data set comprised 138,309 women from 17 case-control studies. PRSs were generated using a clumping and thresholding method, lasso penalized regression, an Empirical Bayes approach, a Bayesian polygenic prediction approach, or linear combinations of multiple PRSs. These PRSs were evaluated in 89,898 women from 3 prospective studies (1592 incident cases). RESULTS: The best performing PRS (genome-wide set of single-nucleotide variations [formerly single-nucleotide polymorphism]) had a hazard ratio per unit SD of 1.62 (95% CI = 1.46-1.80) and an area under the receiver operating curve of 0.635 (95% CI = 0.622-0.649). Combined Asian and European PRSs (333 single-nucleotide variations) had a hazard ratio per SD of 1.53 (95% CI = 1.37-1.71) and an area under the receiver operating curve of 0.621 (95% CI = 0.608-0.635). The distribution of the latter PRS was different across ethnic subgroups, confirming the importance of population-specific calibration for valid estimation of breast cancer risk. CONCLUSION: PRSs developed in this study, from association data from multiple ancestries, can enhance risk stratification for women of Asian ancestry

    Redox regulation of ischemic limb neovascularization - What we have learned from animal studies

    Get PDF
    Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral artery occlusion, although mice with diabetes or atherosclerosis may have higher deleterious levels of oxidants. Therefore, fine control of oxidants is required to stimulate vascularization in the limb muscle. Oxidants transduce cellular signaling through oxidative modifications of redox sensitive cysteine thiols. Of particular importance, the reversible modification with abundant glutathione, called S-glutathionylation (or GSH adducts), is relatively stable and alters protein function including signaling, transcription, and cytoskeletal arrangement. Glutaredoxin-1 (Glrx) is an enzyme which catalyzes reversal of GSH adducts, and does not scavenge oxidants itself. Glrx may control redox signaling under fluctuation of oxidants levels. In ischemic muscle increased GSH adducts through Glrx deletion improves in vivo limb revascularization, indicating endogenous Glrx has anti-angiogenic roles. In accordance, Glrx overexpression attenuates VEGF signaling in vitro and ischemic vascularization in vivo. There are several Glrx targets including HIF-1α which may contribute to inhibition of vascularization by reducing GSH adducts. These animal studies provide a caution that excess antioxidants may be counter-productive for treatment of ischemic limbs, and highlights Glrx as a potential therapeutic target to improve ischemic limb vascularization

    A common variant near TGFBR3 is associated with primary open angle glaucoma

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.Primary open angle glaucoma (POAG), a major cause of blindness worldwide, is a complex disease with a significant genetic contribution.We performed Exome Array (Illumina) analysis on 3504 POAG cases and 9746 controls with replication of the most significant findings in 9173 POAG cases and 26 780 controls across 18 collections of Asian, African and European descent. Apart from confirming strong evidence of association at CDKN2B-AS1 (rs2157719 [G], odds ratio [OR] = 0.71, P = 2.81 × 10−33), we observed one SNP showing significant association to POAG (CDC7–TGFBR3 rs1192415, ORG-allele = 1.13, Pmeta = 1.60 × 10−8). This particular SNP has previously been shown to be strongly associated with optic disc area and vertical cup-to-disc ratio, which are regarded as glaucoma-related quantitative traits. Our study now extends this by directly implicating it in POAG disease pathogenesis

    NADPH oxidase elevations in pyramidal neurons drive psychosocial stress-induced neuropathology

    Get PDF
    Oxidative stress is thought to be involved in the development of behavioral and histopathological alterations in animal models of psychosis. Here we investigate the causal contribution of reactive oxygen species generation by the phagocyte NADPH oxidase NOX2 to neuropathological alterations in a rat model of chronic psychosocial stress. In rats exposed to social isolation, the earliest neuropathological alterations were signs of oxidative stress and appearance of NOX2. Alterations in behavior, increase in glutamate levels and loss of parvalbumin were detectable after 4 weeks of social isolation. The expression of the NOX2 subunit p47phox was markedly increased in pyramidal neurons of isolated rats, but below detection threshold in GABAergic neurons, astrocytes and microglia. Rats with a loss of function mutation in the NOX2 subunit p47phox were protected from behavioral and neuropathological alterations induced by social isolation. To test reversibility, we applied the antioxidant/NOX inhibitor apocynin after initiation of social isolation for a time period of 3 weeks. Apocynin reversed behavioral alterations fully when applied after 4 weeks of social isolation, but only partially after 7 weeks. Our results demonstrate that social isolation induces rapid elevations of the NOX2 complex in the brain. Expression of the enzyme complex was strongest in pyramidal neurons and a loss of function mutation prevented neuropathology induced by social isolation. Finally, at least at early stages, pharmacological targeting of NOX2 activity might reverse behavioral alterations
    • …
    corecore