635 research outputs found
The cyclophilin A DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation
Cyclophilin A is a conserved peptidyl-prolyl cis-trans isomerase (PPIase) best known as the cellular receptor of the immunosuppressant cyclosporine A. Despite significant effort, evidence of developmental functions of cyclophilin A in non-plant systems has remained obscure. Mutations in a tomato (Solanum lycopersicum) cyclophilin A ortholog, DIAGEOTROPICA (DGT), have been shown to abolish the organogenesis of lateral roots; however, a mechanistic explanation of the phenotype is lacking. Here, we show that the dgt mutant lacks auxin maxima relevant to priming and specification of lateral root founder cells. DGT is expressed in shoot and root, and localizes to both the nucleus and cytoplasm during lateral root organogenesis. Mutation of ENTIRE/IAA9, a member of the auxin-responsive Aux/IAA protein family of transcriptional repressors, partially restores the inability of dgt to initiate lateral root primordia but not the primordia outgrowth. By comparison, grafting of a wild-type scion restores the process of lateral root formation, consistent with participation of a mobile signal. Antibodies do not detect movement of the DGT protein into the dgt rootstock; however, experiments with radiolabeled auxin and an auxin-specific microelectrode demonstrate abnormal auxin fluxes. Functional studies of DGT in heterologous yeast and tobacco-leaf auxin-transport systems demonstrate that DGT negatively regulates PIN-FORMED (PIN) auxin efflux transporters by affecting their plasma membrane localization. Studies in tomato support complex effects of the dgt mutation on PIN expression level, expression domain and plasma membrane localization. Our data demonstrate that DGT regulates auxin transport in lateral root formation
The Uneasiest State: Art, Culture, and Society in New Deal Louisiana, 1933-1943. (Volumes I and II).
During the Great Depression artists working in programs funded by the federal government roamed the nation wielding brushes, jotting notes, and pointing cameras in an attempt to define and characterize American society. Never before and not since has this country conducted so intensive a survey of itself, or one so controversial. Federal patronage of the arts occurred during an anxious period of political and cultural turmoil, a turmoil inherent in the story of the Arts Projects themselves. The very structure, organization, composition, execution, and objectives of the arts agencies mirror the tensions of the age. The artists\u27 selection or avoidance of subjects, even the manner by which the fruits of their labors were disseminated among the American people, reflects the turbulence of the 1930s. Nowhere is this more evident than in Huey Long\u27s Louisiana, where the government art program recorded some of its greatest achievements and most bitter disappointments. This dissertation is an interdisciplinary analysis of four federal programs in Louisiana, a state then undergoing rapid political and social transformation. Each of the projects, individually and collectively, not only provides a valuable glimpse into the character of American society in crisis, but also addresses many of the enduring questions of this Republic
Spindle positioning in the stem cell niche
Stem cells are the source of differentiated cells that constitute tissues and organs. Two fundamental characteristics of stem cells are their abilities to self‐renew stem cell identity and to produce differentiated cells, the balance of which can be achieved by asymmetric stem cell division. Many stem cells have been shown to reside in a stem cell niche, the home of stem cells that regulates the stem cell behavior. Recent studies have revealed the critical contribution of cytoskeletons in achieving asymmetric stem cell division: mitotic spindles in dividing stem cells are often oriented with respect to the stem cell niche, which is supported by concerted actions of microtubule networks and components at the cell membrane such as adherens junctions, the actin cytoskeleton, and the extracellular matrix. In this article, we review the mechanism of stem cell spindle orientation, with emphasis on its relationship with the stem cell niche, and discuss how it contributes to tissue development and homeostasis. WIREs Dev Biol 2012, 1:215–230. doi: 10.1002/wdev.16 For further resources related to this article, please visit the WIREs website .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90343/1/16_ftp.pd
Sustained-input switches for transcription factors and microRNAs are central building blocks of eukaryotic gene circuits
WaRSwap is a randomization algorithm that for the first time provides a practical network motif discovery method for large multi-layer networks, for example those that include transcription factors, microRNAs, and non-regulatory protein coding genes. The algorithm is applicable to systems with tens of thousands of genes, while accounting for critical aspects of biological networks, including self-loops, large hubs, and target rearrangements. We validate WaRSwap on a newly inferred regulatory network from Arabidopsis thaliana, and compare outcomes on published Drosophila and human networks. Specifically, sustained input switches are among the few over-represented circuits across this diverse set of eukaryotes
Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data
Background: MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of protein coding genes) are co-transcribed with their host genes and most intergenic miRNAs transcribed from their own RNA polymerase II (Pol II) promoter. However, the length of the primary transcripts and promoter organization is currently unknown. Methodology: We performed Pol II chromatin immunoprecipitation (ChIP)-chip using a custom array surrounding regions of known miRNA genes. To identify the true core transcription start sites of the miRNA genes we developed a new tool (CPPP). We showed that miRNA genes can be transcribed from promoters located several kilobases away and that their promoters share the same general features as those of protein coding genes. Finally, we found evidence that as many as 26% of the intragenic miRNAs may be transcribed from their own unique promoters. Conclusion: miRNA promoters have similar features to those of protein coding genes, but miRNA transcript organization is more complex. © 2009 Corcoran et al
Ensconsin/Map7 promotes microtubule growth and centrosome separation in Drosophila neural stem cells.
International audienceThe mitotic spindle is crucial to achieve segregation of sister chromatids. To identify new mitotic spindle assembly regulators, we isolated 855 microtubule-associated proteins (MAPs) from Drosophila melanogaster mitotic or interphasic embryos. Using RNAi, we screened 96 poorly characterized genes in the Drosophila central nervous system to establish their possible role during spindle assembly. We found that Ensconsin/MAP7 mutant neuroblasts display shorter metaphase spindles, a defect caused by a reduced microtubule polymerization rate and enhanced by centrosome ablation. In agreement with a direct effect in regulating spindle length, Ensconsin overexpression triggered an increase in spindle length in S2 cells, whereas purified Ensconsin stimulated microtubule polymerization in vitro. Interestingly, ensc-null mutant flies also display defective centrosome separation and positioning during interphase, a phenotype also detected in kinesin-1 mutants. Collectively, our results suggest that Ensconsin cooperates with its binding partner Kinesin-1 during interphase to trigger centrosome separation. In addition, Ensconsin promotes microtubule polymerization during mitosis to control spindle length independent of Kinesin-1
miRGen: a database for the study of animal microRNA genomic organization and function
miRGen is an integrated database of (i) positional relationships between animal miRNAs and genomic annotation sets and (ii) animal miRNA targets according to combinations of widely used target prediction programs. A major goal of the database is the study of the relationship between miRNA genomic organization and miRNA function. This is made possible by three integrated and user friendly interfaces. The Genomics interface allows the user to explore where whole-genome collections of miRNAs are located with respect to UCSC genome browser annotation sets such as Known Genes, Refseq Genes, Genscan predicted genes, CpG islands and pseudogenes. These miRNAs are connected through the Targets interface to their experimentally supported target genes from TarBase, as well as computationally predicted target genes from optimized intersections and unions of several widely used mammalian target prediction programs. Finally, the Clusters interface provides predicted miRNA clusters at any given inter-miRNA distance and provides specific functional information on the targets of miRNAs within each cluster. All of these unique features of miRGen are designed to facilitate investigations into miRNA genomic organization, co-transcription and targeting. miRGen can be freely accessed at
miRGen 2.0: a database of microRNA genomic information and regulation
MicroRNAs are small, non-protein coding RNA molecules known to regulate the expression of genes by binding to the 3′UTR region of mRNAs. MicroRNAs are produced from longer transcripts which can code for more than one mature miRNAs. miRGen 2.0 is a database that aims to provide comprehensive information about the position of human and mouse microRNA coding transcripts and their regulation by transcription factors, including a unique compilation of both predicted and experimentally supported data. Expression profiles of microRNAs in several tissues and cell lines, single nucleotide polymorphism locations, microRNA target prediction on protein coding genes and mapping of miRNA targets of co-regulated miRNAs on biological pathways are also integrated into the database and user interface. The miRGen database will be continuously maintained and freely available at http://www.microrna.gr/mirgen/
Drosophila melanogaster as a model for basal body research
No supplementary material available.The fruit fly, Drosophila melanogaster, is one of the most extensively studied organisms in biological research and has centrioles/basal bodies and cilia that can be modelled to investigate their functions in animals generally. Centrioles are nine-fold symmetrical microtubule-based cylindrical structures required to form centrosomes and also to nucleate the formation of cilia and flagella. When they function to template cilia, centrioles transition into basal bodies. The fruit fly has various types of basal bodies and cilia, which are needed for sensory neuron and sperm function. Genetics, cell biology and behaviour studies in the fruit fly have unveiled new basal body components and revealed different modes of assembly and functions of basal bodies that are conserved in many other organisms, including human, green algae and plasmodium. Here we describe the various basal bodies of Drosophila, what is known about their composition, structure and function.EMBO installation grant; European Research Council; Instituto Gulbenkian de Ciência; Fondation pour la recherche Médicale grant: (FRM DEQ 20131029168).info:eu-repo/semantics/publishedVersio
- …
