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Abstract

Background: MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very
important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and
their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs
(located in introns or exons of protein coding genes) are co-transcribed with their host genes and most intergenic miRNAs
transcribed from their own RNA polymerase II (Pol II) promoter. However, the length of the primary transcripts and
promoter organization is currently unknown.

Methodology: We performed Pol II chromatin immunoprecipitation (ChIP)-chip using a custom array surrounding regions of
known miRNA genes. To identify the true core transcription start sites of the miRNA genes we developed a new tool (CPPP).
We showed that miRNA genes can be transcribed from promoters located several kilobases away and that their promoters
share the same general features as those of protein coding genes. Finally, we found evidence that as many as 26% of the
intragenic miRNAs may be transcribed from their own unique promoters.

Conclusion: miRNA promoters have similar features to those of protein coding genes, but miRNA transcript organization is
more complex.
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Introduction

MicroRNAs (miRNAs) are short, ,22 nt, single-stranded

RNAs that act as regulators of genes’ expression. By virtue of

base complementarity, they bind to their target gene mRNAs and

can block translation or accelerate their degradation [1]. miRNAs

have been implicated in a variety of human diseases [2,3] and

more recent studies showed their association with particular

cellular pathways [4].

Although miRNA genes play an important role in many

biological processes, little is known about their transcriptional

regulation. Currently, it is believed that most miRNA genes are

transcribed by RNA polymerase II (Pol II) [5,6], although some

exceptions exist [7]. A first step toward understanding miRNA

regulation is to identify their transcription start sites (TSSs).

Currently, only a small number of human miRNA genes have

confirmed TSSs [5,8,9], which is insufficient for studying the

promoter sequence features and for comparison with protein

coding genes. Due to this lack of information, all studies

attempting to analyze the miRNA core promoters have focused

on the area immediately upstream of the computational prediction

of the pri-miRNA [10,11,12]. While these regions exhibit similar

conservation patterns to the promoters of protein coding genes

[13] their potential to act as promoters is still unknown. Identifying

the active core miRNA promoters will thus allow us to study

particular pri-miRNA characteristics such as transcript length and

core promoter features. Recently, two studies that utilized high-

throughput genomic techniques offered a first glimpse into the

likely location and sequence characteristics of human miRNA

TSSs [14,15]. In addition, two other studies involving high-

throughput data from mouse and C. elegans offered insights on

miRNA gene transcription in these species [14,16].

Existing algorithms for modeling Pol II core promoters vary

both in methodology and in performance. Previous algorithms

have used transcription factor binding site frequencies [17], the

size and location of CpG islands [18], and the physical properties
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of the DNA. Algorithmically, neural networks [19], relevance

vector machines [20], and additive logistic regression with

boosting have been applied [21].

To better understand the transcriptional regulation of miRNAs

we performed chromatin immunoprecipitation (ChIP)-chip for the

Pol II complex using a custom designed miRNA location array.

After comparing different DNA features, we developed an efficient

Support Vector Machine (SVM) based method for Pol II core

promoter classification (Core Promoter Prediction Program, CPPP). We

applied these tools to identify miRNA TSSs, better understand

how intergenic and intragenic (i.e., intronic or exonic) miRNA

genes are transcribed and to compare the features of their

promoters with those of the protein coding genes.

Results and Discussion

Identification of regions containing pri-miRNA TSSs from
Pol II ChIP-chip data

To identify the TSS for pri-miRNAs, ChIP-chip was performed

on A549 lung epithelial cells with a Pol II-specific antibody, as

described in Materials and Methods. Statistical analysis [22] was used

to identify windows of 1 Kb in length that exhibit significant Pol II

signals (immunoprecipitated DNA vs. background). The nearest

statistically significant window to the 59 end of each of the 531

known pre-miRNAs was further analyzed with our algorithm to

predict whether it contained the miRNA TSS. The custom-made

tiling array we used included 50 Kb upstream of each known

miRNA gene (see Materials and Methods). This distance threshold is

consistent with previous studies that showed high correlation of

expression between miRNA genes located up to 50 Kb apart [23].

Our method resulted in 34 intergenic pre-miRNAs or polycis-

tronic pri-miRNAs having a statistically significant Pol II signal

associated with them (Table 1). Regions with a significant Pol II

signal that also overlapped the 59 end of a known gene (as

identified by the UCSC table browser [24,25]) were excluded from

subsequent analysis. This was necessary because the ChIP-chip

data cannot distinguish shared core promoter regions. An example

of the distribution of the Pol II binding signals and the identified

TSS of the pri-miR-10a is presented in Figure 1.

The miR-23a,miR-27a,miR24-2 cluster is probably the best-

studied human intergenic pri-miRNA transcript. Lee et al. [5] have

shown that the TSS for this cluster is located 124 nucleotides

upstream of miR-23a, which our ChIP-chip data analysis

confirmed. The ChIP-chip data was also able to confirm the

previously reported pri-miRNA TSS listed by Fujita and Iba [26]

for miR-21 (Table 1). The distance between the Pol II peaks and

the location of the pre-miRNA varies substantially between genes,

from a minimum of zero to a maximum of 40 Kb. The average

and median values are 10.8 Kb and 8.7 Kb, respectively.

The analysis of the Pol II ChIP-chip data also provided insights

into how intragenic (intronic, exonic) miRNAs are transcribed.

Currently, it is believed that they are transcribed along with their

host gene [6]. Indeed, for many intragenic miRNAs the nearest

significant upstream Pol II ChIP-chip peak region overlapped the

59 region of their host gene (Table 2). These cases include a few

miRNAs that were previously shown to be co-transcribed with

their host gene, such as miR-146a [27] and the miR-17,miR-

18a,miR-19a,miR-20a,miR-19b-1,miR-92a-1 cluster [9].

Interestingly, the analysis found that some of the intragenic

miRNA genes may be transcribed by their own promoter

(Table 3), which was also observed in the recent analysis by

Ozsolak et al. [15]. We note that in contrast with the promoters of

intergenic miRNA genes, CpG islands were identified only in 3 of

the 11 intragenic promoters. The distance between the Pol II peak

and the beginning of the (intragenic) pre-miRNA gene also varies

between zero and 41 Kb, but with a higher number of TSSs

observed at longer distances (average and median = 19 Kb).

Modeling Pol II core promoter features with n-mers and
weight matrices

In the following section, we describe the development of CPPP,

a novel SVM-based method for prediction of Pol II TSSs. CPPP

was used for the identification of the miRNA TSSs from the ChIP-

chip data and for comparing the features of the miRNA promoters

to those of protein coding gene promoters.

It is known that the genomic regions immediately upstream of

the TSS of protein coding genes exhibit high levels of sequence

conservation [13,28,29,30,31], which is probably related to the

high concentration of cis-regulatory sites in this region [32]. All of

the existing algorithms for modeling Pol II core promoters have

used this property to different extents. Generally one can model

DNA target sites using either n-mer frequencies or weight

matrices, commonly known as position-specific scoring matrices

(PSSM) [33]. The first class of methods (also termed enumerating or

dictionary-based methods; e.g., [34,35,36,37]) is better suited for

representation of the binding preferences of those transcription

factors that have a restricted set of DNA targets. n-mer frequencies

have been used in the past to model Pol II core promoters either

alone [12] or in conjunction with some promoter entropy measure

[38]. However, the DNA targets of most transcription factors are

not highly conserved, which is the reason why PSSM models are

widely used for representing DNA motifs. Regardless, using

PSSMs for Pol II core promoter recognition has also its limitations.

First, the currently known DNA motifs are redundant, not only

because the available databases contain multiple matrices for the

same factor, but also because structurally similar transcription

factors are known to recognize similar ‘‘core’’ motifs [29,39].

Second, the binding preferences are known only for a small

percent of the transcription factor proteins and protein complexes.

For example, TRANSFAC database [40] currently has annotated

2,113 mammalian transcription factors, but it only contains 601

binding models. Third, even if the binding preference of a given

transcription factor is known, the task of determining whether it

binds to a given promoter is not trivial, mainly due to the high false

positive prediction rate [41,42]. Despite the above limitations,

PSSM models have been used extensively in the past for Pol II

core promoter identification [10,21,43].

The problems of PSSM model redundancy and the relatively

small number of transcription factors with known binding

preferences can be diminished if one uses familial binding profiles

(FBPs) [39]. FBPs represent an ‘‘average’’ of the binding

preferences of related transcription factors. They are based on

the fact that transcription factors of the same structural group

typically bind to similar sets of sequences. This method not only

reduces the PSSM model redundancy, but also offers models for

the transcription factors for which the binding preference is

currently unknown (since the transcription factors with unknown

preferences are likely to belong in one of the existing families).

Sandelin and Wasserman initially built a set of 11 FBPs using a

semi-manual method [44]. In that study, the zinc finger proteins

were excluded from the FBP construction due to their high degree

of target promiscuity, which in turn makes them difficult to cluster

correctly. More recently, Mahony et al. [29] used an automatic

method to construct 17 FBPs. This set of FBPs includes all but the

C2H2 the zinc finger (sub)family.

Using the same clustering method developed in Mahony et al.

[29] we built 31 new FBPs from the C2H2 zinc finger proteins.

Mammalian microRNA Promoter
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These 31 new FBPs together with the 17 FBPs from the Mahony et

al. study were used in the subsequent analysis.

Evaluating Core Promoter Features Using Support Vector
Machines

In order to better understand how various features contribute to

the characterization of the Pol II core promoters we compared

them using an SVM [45,46]. The SVM methodology was chosen

because it can combine multiple types of evidence (features) under

the same general framework. In this study, we used (a) the n-mer

frequencies (n = 3,4) and (b) matches to the set of 48 generalized

DNA binding profiles (FBPs) as features of the SVM, and (c) the

GC content. The reason for using GC content as an additional

feature in the SVM training is that it seems to be a prominent

feature in a subset of eukaryotic promoters [47].

Overall, we constructed and compared five SVM models: (1)
FBPs only (48 features), (2) n-mers only (n = 3,4) (320 features), (3)
FBPs+GC content, (4) n-mers+GC content, and (5) FBPs+n-

mers+GC content. All models were trained on the same set of

3,015 verified core promoters of protein coding genes (positive

examples; see Materials & Methods) and 3,015 randomly chosen

intergenic sequences (negative examples; see Materials and Methods).

Performance was measured by a 206 cross-validation in which

Table 1. Identification of promoters of intergenic miRNA genes.

miRNA
Chromosomal
location ChIP-chip region CPPP Model

Predicted TSS
(CPPP) Distance

miR-200b,miR-200a,miR-429 Chr1: 1092346 (+) [1082033, 1083782] CpG+ 1083333 8763

miR-34a Chr1: 9134423 (2) [9162283, 9166532] CpG+ 9163733 29310

miR-101-1 Chr1: 65296779 (2) [65304283, 65307532] CpG+ 65305833 9054

miR-181a-1,miR-181b-1 Chr1: 197094905 (2) [197125783, 197127032] CpG2 none predicted NA

miR-202 Chr10: 134911115 (2) [134919994, 134925743] CpG+ 134924844 8879

miR-210 Chr11: 558198 (2) [559355, 560354] CpG+ none predicted NA

miR-194-2,miR-192 Chr11: 64415487 (2) [64416605, 64418104] CpG2 64416930 1193

miR-200c,miR-141 Chr12: 6943122 (+) [6940546, 6942545] CpG+ 6941146 1976

let-7i Chr12: 61283732 (+) [61279796, 61291045] CpG+ 61283796 506

miR-379,miR411,…,miR-410,miR-656 Chr14: 100558155 (+) [100524119, 100525868] CpG2 none predicted NA

miR-193b Chr16: 14305324 (+) [14302031, 14310280] CpG+ 14304581 743

miR-138-2 Chr16: 55449930 (+) [55439531, 55441030] CpG2 55439856 9824

miR-497,miR-195 Chr17: 6862065 (2) [6863309, 6865058] CpG2 6864759 2444

miR-10a Chr17: 44012308 (2) [44017059, 44018808] CpG+ 44017709 5401

miR-196a-1 Chr17: 44064920 (2) [44078809, 44080558] CpG+ 44079509 14589

miR-21 Chr17: 55273408 (+) [55267309, 55276558] CpG2 55271984 1174

miR-122 Chr18: 54269285 (+) [54235566, 54236565] CpG2 54235891 33144

miR-23a,miR-27a,miR-24-2 Chr19: 13808473 (2) [13807348, 13809097] CpG2 13808448 0

miR-181c,miR-181d Chr19: 13846512 (+) [13832848, 13834847] CpG2 none predicted NA

miR-99b,let-7e,miR125a Chr19: 56887676 (+) [56882098, 56886347] CpG+ none predicted NA

miR-216a,miR-217 Chr2: 56069698 (2) [56072783, 56074282] CpG2 56073933 3985

miR-301b,miR-130b Chr22: 20337269 (+) [20335283, 20337282] CpG+ 20336583 686

let-7a-3,let-7b Chr22: 44887292 (+) [44879283, 44883032] CpG+ 44881933 5109

miR-206,miR-133b Chr6: 52117105 (+) [52096878, 52098877] CpG2 52098453 18402

miR-30a Chr6: 72170045 (2) [72164628, 72176377] CpG2 72174203 3908

miR-129-1 Chr7: 127635160 (+) [127593752, 127595501] CpG+ 127594092 41068

miR-183,miR-96,miR-182 Chr7: 129202090 (2) [129206752, 129207751] CpG+ 129207202 5112

miR-29b-1,miR-29a Chr7: 130212838 (2) [130219002, 130223501] CpG2 130223027 9939

miR-30d,miR-30b Chr8: 135886370 (2) [135913283, 135915782] CpG+ 135914133 27763

let-7a-1,let-7f-1,let-7d Chr9: 95978059 (+) [95966631, 95971380] CpG+ 95969131 9928

miR-181a-2,miR-181b-2 Chr9: 126494541 (+) [126459631, 126464380] CpG2 126460831 33460

miR-222,miR-221 ChrX: 45491474 (2) [45504862, 45507861] CpG2 45506782 15308

miR-542,miR-450a-2,miR-450a-1,miR-450b ChrX: 133503133 (2) [133502362, 133506611] CpG+ 133505762 2629

miR-505 ChrX: 138834056 (2) [138842362, 138844111] CpG+ 138843122 9066

miRNA: miRNA gene symbol, multiple symbols designate cluster of co-expressed miRNAs; Chromosomal location: the chromosomal position and orientation of the
miRNA gene; ChIP-chip region: the nearest region with a statistically significant peak; CPPP model: the CpG (CpG+) or non-CpG (CpG2) model used for the TSS
prediction; Predicted TSS: TSS predicted by CPPP; Distance: the distance of the predicted TSS from the most 59 pre-miRNA transcript. Bold letters designate previously
verified TSSs.
doi:10.1371/journal.pone.0005279.t001
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Table 2. Intragenic miRNAs who’s nearest ChIP-chip peak overlaps the host gene’s TSS.

miRNA Host Gene Chromosomal location ChIP-chip region

miR-30e,miR30c-1 NFYC Chr1: 40992613 (+) [40946783, 40950532]

miR-186 ZRANB2 Chr1: 71305987 (2) [71316783, 71320532]

miR-130a AK096335 Chr11: 57165246 (+) [57161605, 57163604]

miR-148b COPZ1 Chr12 53017266 (+) [53004046, 53006295]

miR-26a-2 CTDSP2 Chr12: 56504742 (2) [56524546, 56528295]

miR-15a,miR-16-1 DLEU2 Chr13: 49521338 (2) [49551648, 49555397]

miR-17,miR-18a,miR-19a,miR-20a,miR-
19b-1,miR-92a-1

C13orf25 v_1 Chr13: 90800859 (+) [90798648, 90800647]

miR-423 CCDC55 Chr17: 25468222 (+) [25467059, 25470058]

miR-301a,miR-454 FAM33A Chr17: 54583364 (2) [54583809, 54589308]

miR-330 EML2 Chr19: 50834185 (2) [50833598, 50834597]

miR-26b CTDSP1 Chr2: 218975612 (+) [218968033, 218974282]

miR-103-2 PANK2 Chr20: 3846140 (+) [3816001, 3820000]

miR-185 C22orf25 Chr22: 18400661 (+) [18387533, 18389782]

miR-191,miR-425 DALRD3 Chr3: 49033146 (2) [49026104, 49038353]

miR-15b,miR-16-2 SMC4 Chr3: 161605069 (+) [161598354, 161603353]

miR-378 PPARGC1B Chr5: 149092580 (+) [149089935, 149091684]

miR-103-1 PANK3 Chr5: 167920556 (2) [167938685, 167940184]

miR-335 MEST Chr7: 129923187 (+) [129912502, 129914001]

miR-31 LOC554202 Chr9: 21502184 (2) [21539381, 21557130]

miR-421 AK125301 ChrX: 73355021 (2) [73377862, 73379611]

miR-374b,miR-374a,miR-545 AK057701 ChrX: 73355178 (2) [73421362, 73431611]

miR-361 CHM ChrX: 85045368 (2) [85188362, 85189861]

miR-503 MGC16121 ChrX: 133508094 (2) [133506612, 133515611]

miR-452,miR-224 GABRE ChrX: 150878840 (2) [150889112, 150894611]

miR-22 MGC14376 Chr17: 1564031 (2) [1563059, 1569558]

miR-636 SFRS2 Chr17: 72244225 (2) [72244059, 72246308]

miR-146a DQ658414 Chr5: 159844936 (+) [159826435, 159828934]

Host gene: the gene whose intron the miRNA was found in. Other column names as in Table 1. Bold letters designate genes that are known to be co-transcribed with
their host genes.
doi:10.1371/journal.pone.0005279.t002

Figure 1. Pol II ChIP-chip results for miR-10a. The blue arrow represents the location and transcriptional direction of hsa-miR-10a. The red
dashes represent the location and value of the ChIP-chip probes. TSS – transcription start site of this miRNA.
doi:10.1371/journal.pone.0005279.g001

Mammalian microRNA Promoter

PLoS ONE | www.plosone.org 4 April 2009 | Volume 4 | Issue 4 | e5279



75% of the examples in each dataset were used for training and

the remaining 25% for testing. The results are presented in

Figure 2, and indicate that the n-mer-based models perform

generally better than the FBP-based models, both in terms of

sensitivity (percent of correctly predicted positive examples) and

specificity (percent of true positive examples among all predic-

tions). For example, the ‘‘n-mer only’’ SVM model (n = 3, 4)

exhibited SN = 74.3% and SP = 86.1% compared to SN = 70.8%

and SP = 82.2% of the ‘‘FBP only’’ model. It should be noted,

however, that none of these differences is statistically significant. Based on

these results, one may choose to use FBPs for this type of

modeling, especially in species where the number of training

examples is limited.

The SVM results reported above were based on the dot plot

kernel function (linear discriminator). Tests with polynomial (3rd

order) and radial kernels gave the same or slightly worse results

(data not shown). Also, all SVM models were constructed using

random intergenic regions as background (see Materials and

Table 3. Identification of promoters for intragenic miRNA genes.

miRNA Host Gene Chromosomal location ChIP-chip region CPPP Model Predicted TSS (CPPP) Distance

miR-107 PANK1 Chr10: 91342564 (2) [91382494, 91383493] CpG2 91382844 40030

let-7a-2,miR-100 AK091713 Chr11: 121522511 (2) [121521855, 121523854] NA none predicted NA

miR-190 TLN2 Chr15: 60903208 (+) [60860703, 60861952] CpG2 60861428 41530

miR-99a,let-7c C21orf34 Chr21: 16833279 (+) [16826951, 16832700] CpG2 16827826 5203

miR-125b-2 C21orf34 Chr21: 16884427 (+) [16880451, 16883950] CpG2 16880951 3226

miR-26a-1 CTDSPL Chr3: 37985898 (+) [37961854, 37963353] CpG2 37962529 23119

miR-196b HOXA9 Chr7: 27175707 (2) [27178752, 27180251] CpG+ 27178802 3095

miR-489,miR-653 CALCR Chr7: 92951267 (2) [92953002, 92954251] NA none predicted NA

miR-101-2 RCL1 Chr9: 4840296 (+) [4827381, 4828630] CpG2 4828281 11765

miR-491 KIAA1797 Chr9: 20706103 (+) [20673131, 20677880] CpG+ 20677181 28922

miR-204 TRPM3 Chr9: 72614820 (2) [72633881, 72634880] NA none predicted NA

miR-7-1 HNRPK Chr9: 85774592 (2) [85774131, 85775630] CpG2 85775081 239

mir-23b,miR-27b,miR-24-1 C9orf3 Chr9: 96887310 (+) [96846381, 96860880] CpG+ 96855881 31429

miR-32 C9orf5 Chr9: 1108483999 (2) [110866881, 110868380] CpG2 110867881 19232

miR-448 HTR2C ChrX: 113964272 (+) [113955612, 113956861] NA none predicted NA

Column names as in Table 1 and 2. Bold letters designate genes whose expression was found to be anti-correlated with their host genes.
doi:10.1371/journal.pone.0005279.t003

Figure 2. Performance of the n-mers and FBPs (alone and in combination) in predicting Pol II core promoter regions. Sn – sensitivity,
Sp – specificity.
doi:10.1371/journal.pone.0005279.g002
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Methods) instead of the intronic regions previous studies have used

[38]. Evaluation with intronic sequences as background was found

to be slightly worse (data not shown).

We note that other studies have occasionally reported better

performance (e.g., [12,38]). We believe this is due to the smaller

size of the datasets they used and the type of promoters these

datasets contained. For example, Gangal and Sharma [38]

reported SN.87% and SP.86%, but the 800 promoter sequences

in their dataset were all taken from EPD [48]. EPD is highly

enriched in promoters containing CpG islands (about 83% of the

total.) A very powerful separation hyperplane can be created using

these GC-rich promoters as positive set and the, generally AT-

rich, intronic sequences as negative set. However this model is

expected to perform poorly on non-CpG island promoters, as we

will show. In our case, only half of the promoters in the training/

testing dataset contained CpG islands. When the EPD dataset is

used for training/testing in this study, our results are similar

(intronic background) or slightly better (intergenic background) to

those reported in Gangal and Sharma [38]. Nevertheless, we

found that partitioning the promoters to those containing CpG

islands and those lacking CpG islands improves the results

substantially (see below).

The effect of the presence or absence of CpG islands in
the prediction efficiency of Pol II core promoters

In general, the frequency of CG dinucleotides in vertebrate

genomes is lower than expected by chance [49]. This is due to the

frequent conversion of methylated-CG into TG [50]. However,

often the promoters of vertebrate genes contain stretches with high

frequency of CG dinucleotides (CpG islands) [51]. These regions are

often defined as 200 nt or more with GC content greater than

50% [18]. Ioshikhes and Zhang [18] have previously used this

feature to predict the CpG island containing promoters with high

efficiency. For this reason, we tested the prediction efficiency of the

‘‘n-mer only’’ and ‘‘FBP only’’ SVM models in mammalian core

promoters in the presence or absence of CpG islands. Focus was

placed on these two models because they are simpler than the

composite model and their performance in the general dataset is

the same or slightly better than the other models (Figure 2).

The positive training set was partitioned into CpG containing

promoters (CpG+) and non-CpG promoters (CpG2), for each of

which a n-mer-based and a FBP-based SVM model were

calculated. The negative dataset contained equal number of

randomly selected sequences from the intergenic parts of the

genome (see Materials and Methods). The results demonstrate that if

SVMs are trained in this way, then the prediction efficiency differs

significantly between the two types of promoters. In particular, the

‘‘n-mer model’’ trained on CpG+ promoters exhibits SN = 94.8%

(SD = 1.1%) and SP = 97.6% (SD = 1%) in the cross-validation

tests. By contrast, when trained on CpG2 promoters the ‘‘n-mer

model’’ performs significantly worse (SN = 73.4%, SD = 2.6% and

SP = 73.2%, SD = 2.9%) (Figure 3). The results with the ‘‘FBP

model’’ are similar for both the CpG+ and CpG2 trained models

(Figure 3). Also, the results show that in general n-mer models

perform slightly better than the corresponding FBP models

regardless of the training (CpG+ or CpG2 datasets) (Figure 3).

Furthermore, the results show that n-mer-based models trained on

CpG+ promoters tend to predict extremely well the CpG

promoters (SN = 94.8%, SP = 97.6%), which agrees with previous

reports [18]. We have discovered that this better performance can

be attributed to the GC content of these promoters (compared to

the background), and this could be misleading. When intergenic

sequences with similar GC content were used as negative dataset

during training, the efficiency of the n-mer-based SVM on CpG+
promoters was reduced to values similar to the prediction of the

CpG2 promoters with the CpG2 model (SN = 75.3% with

SD = 2.4% and SP = 80.0% with SD = 2.0%). Since our main

aim in this report is to discover important promoter features, not

simply the features of the CpG islands, in the following analysis we

Figure 3. Performance of the SVM models in predicting CpG+ and CpG2 promoters. Two SVM models were evaluated in the prediction of
the CpG+ promoters: one with random intergenic background (CpG+/Rnd_bg) and one with intergenic background with similar GC content (CpG+/
GC_bg). Sn – sensitivity, Sp – specificity.
doi:10.1371/journal.pone.0005279.g003
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use the seemingly less efficient models (i.e., n-mer SVMs trained on

CpG+ vs. GC-normalized intergenic background and CpG2 vs.

random intergenic background).

The program ‘gist-fselect’ from the Gist package [45] was

used to evaluate the significance of each of the features of core

promoter regions (t-test metric p-value was used to determine

significance) in CpG and non-CpG promoters. The top 20 features

(ranked by the Fisher score of the package) are presented in

Table 4. Interestingly, despite correcting for GC content, the

most significant features for the CpG+ promoters were CG

containing n-mers. Also of interest is the n-mer ‘CTG,’ which is

present in the top 20 most significant features of both models.

Comparison of core promoters for protein coding and
miRNA genes with SVM models

The ChIP-chip data showed that 34 of the intergenic miRNA

genes had significant Pol II signals less than 50 Kb away. The

3 Kb regions surrounding the windows with the most significant

Pol II peak were collected and the presence or absence of CpG

islands was determined using the same method as in Zhao et al.

[21]. CpG islands were identified in about 55% of these

promoters. Subsequently, the corresponding SVM model (trained

on CpG+ or CpG2 promoters of protein coding genes) was used

across the significant ChIP-chip region to identify the top scoring

500 bp window that contains the predicted TSS. The CPPP

algorithm identified a TSS in the upstream regions of 29 out of the

34 intergenic miRNA genes (Table 1). Each of the five intergenic

miRNAs for which CPPP was unable to identify a core promoter

contained a 500 bp region that scored just below the threshold

cutoff for identifying a core promoter from a background sequence

(data not shown).

The number of Pol II associated intergenic miRNA genes is not

large enough to retrain the SVM models and calculate significant

sequence features. However, we can test whether the most

significant features in the promoters of the protein coding genes

(Table 4) are also overrepresented in the miRNA promoters.

Comparison of all n-mer frequencies of the CpG promoters of

protein coding genes with those of the miRNA genes resulted in a

statistically significant difference of 5 n-mers (‘CAC’, ‘GCAC’,

‘CGGT, ‘GTAC’, and ‘CTTA’; Wilcoxon signed-rank test; p-

value,0.05 after Bonferroni correction). However, the only 4-mer

in the list of the top 50 most important features for the model was

‘CAC’. For the non-CpG miRNA promoters, we found no

features with a statistically different frequency when compared to

that of the protein coding genes.

Computational analysis of potential promoters of
intragenic miRNA genes

Intragenic miRNA genes are generally believed to be co-

transcribed with their host genes. Overall, we found significant Pol

II peaks associated with 43 intragenic miRNA genes or gene

clusters. In 27 cases, the Pol II peak overlapped the promoter of

the host gene (Table 2), but in 15 cases the Pol II peak was

located within the host gene (Table 3). We scanned the ChIP

identified regions with internal Pol II peaks with the corresponding

SVM model (CpG+ or CpG2) and we found that 11 of these 15

intragenic genes contained a highly likely TSS region (Table 3.)

This result indicates that 26% or more of the intragenic genes may

Table 4. The top 20 most significant n-mers for each of the two models and the Fisher score as well as the 2log10 of their p-value
from Gist package (t-test metric).

non-CpG CpG

Feature 2log10(p-value) Fisher Score Feature 2log10(p-value) Fisher Score

CCCT 29.7925 0.152704 GCG 26.8458 0.136008

AGGG 26.8574 0.136658 GGCG 23.3817 0.11732

GCCC 23.9996 0.12122 CTG 21.5833 0.107693

CCC 23.6638 0.119395 CGC 21.3434 0.106413

TGTA 23.7021 0.119389 CCTG 18.0213 0.0887804

CCCC 23.6248 0.119181 TCCG 17.9756 0.088539

AAT 23.4104 0.117827 GCGG 17.8046 0.0876364

GAAG 22.2979 0.111908 TCGC 15.998 0.0781331

AGC 21.1428 0.105734 CGA 14.4589 0.0700828

TAC 20.8754 0.104254 CTGG 14.448 0.0700258

ATT 19.5344 0.0971108 CAGG 14.0166 0.0677778

TAAT 19.1561 0.0950535 CTA 13.9502 0.067432

ATTA 19.1021 0.0947959 CGGA 13.7632 0.0664587

TACA 19.0021 0.0942557 GCGC 13.7331 0.0663022

GTA 18.6868 0.0925992 CGCC 13.2385 0.0637315

AATA 18.6051 0.092075 CAC 12.9486 0.0622268

GGG 18.0089 0.0890836 CAG 12.6467 0.0606617

CTGC 18.0034 0.0890473 CGG 12.3375 0.0590611

CAGC 16.8798 0.0831072 CGCG 12.3167 0.0589534

CTG 16.3289 0.0801748 TCG 12.2470 0.0585926

Bold letters indicate the n-mer that appears to be a significant feature in both the CpG+ and CpG2 models.
doi:10.1371/journal.pone.0005279.t004
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be transcribed from their own promoter. In agreement with this

finding, the miR-32 gene was previously shown to have a negative

correlation with its host gene, C9orf5 [23]. This is an important

and interesting finding about the transcriptional regulation of

intragenic miRNAs, although further biochemical validation is

required.

Comparison with ChIP-seq data
Marson and colleagues [14] recently performed ChIP-seq

experiments with four general transcription factors in human

and mouse cells. They then combined their data with those from

previous studies on epigenetic markers. Using a variety of features

such as evolutionary conservation and distance of the peak from

the known miRNA genes, they assigned an ad hoc score to each

putative TSS. A positive score indicated that the TSS is likely to

belong to the miRNA and a negative score indicated that the TSS

likely belonged to another gene. Although their study is very

different than ours in the methodology followed (ChIP-chip vs.

ChIP-seq) and the proteins targeted by the ChIP, comparing the

two can be useful. Overall, we found the two datasets are

comparable with respect to miRNA promoter characteristics.

Furthermore, we ran the CPPP algorithm on their data and

verified most of their predicted promoters. In particular, there are

44 TSSs associated with intergenic miRNAs with positive Marson

score (after removing some inconsistent or mis-annotated TSSs,

see Materials and Methods); and CPPP scored all but three of them as

likely to contain a core promoter (see Supplementary Data). The two

datasets (ours and Marson’s) include one miRNA gene and one

miRNA cluster with well studied TSSs: cluster miR-23a,miR-

27a,miR-24-2 [5], and gene miR-21 [26]. CPPP correctly

identified the location of both known TSSs, while the Marson

dataset only found the correct TSS for the miR-23a cluster (see

Supplementary Data.)

Conclusions
The prediction of miRNA TSSs and the understanding of the

processes that affect their transcription is an essential step towards

deciphering their role in regulatory networks. In this study, high-

throughput Pol II ChIP-chip data were collected and used to infer

miRNA TSSs. Analysis of these data showed that intergenic and

some intragenic miRNAs are transcribed by Pol II at a distance

that can be as large as 40 Kb from the pre-miRNA genes,

indicating that pri-miRNA transcripts might be much longer than

originally thought [10,11,12]. We compared the most commonly

used promoter features (n-mer frequencies and PSSM models) and

found the n-mer frequencies to be generally better than the

generalized PSSM models, at the cost of additional parameters.

Also, in agreement with other studies [18], we found that CpG+
promoters are much easier to predict than CpG2 and that core

promoter prediction is more efficient when both models are used

independently. However, we also found that this generally

superior performance of the SVM models on CpG promoters vs.

non-CpG promoters is due to the GC bias of the former. When a

random background with similar GC content as the CpG+
promoters was used, the efficiency of the SVM model became

similar to that of the CpG2 model. This is a previously overlooked

feature of the SVM training for core promoter recognition. Using

the best performing SVM on our ChIP-chip data, we found that

miRNA Pol II promoters contain most of the same features as the

protein coding gene promoters.

Our results highlight the complexity and independence of the

miRNA gene expression regulation and thus encourage more

detailed studies in various cells, organs and physiological

conditions. Our study gives a biochemical verification to previous

statistical analyses that indicated that pri-miRNA transcripts can

be tens of thousands of bases long [23]. Finally, the finding that

26% or more of the intragenic miRNA genes may be transcribed

by their own promoter also encourages much more detailed

studies into their transcriptional regulation.

Elucidating the transcriptional networks that determine expres-

sion of miRNAs is critically important considering their important

regulatory roles. miRNA location arrays may be useful tools in

elucidating these networks

Materials and Methods

Chromatin Immunoprecipitation (ChIP-chip)
Approximately 108 A549 cells (American Type Culture

Collection, Manassas, VA) were grown in F12K medium

(Invitrogen, Carlsbad, CA) with 2 mM L-glutamine and 10%

fetal bovine serum. Cells were incubated at 37uC in a humidified

chamber supplemented with 5% CO2. Once 80% confluent, cells

were serum starved overnight. Proteins were cross-linked to the

DNA using fresh formaldehyde solution (50 mM Hepes-KOH

pH 7.5, 100 mM NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA

pH 8.0, 11% Formaldehyde) for 10 min at room temperature.

The formaldehyde was quenched with 2.5 M glycine for 5 min at

room temperature. Cells were washed twice in PBS and harvested

using a silicone scraper. Cells were centrifuged at 1,3506g for

5 minutes at 4uC and the pellet washed twice with PBS. The pellet

was resuspended in 5 ml of lysis buffer 1 (50 mM Hepes-KOH

pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-

40, 0.25% Triton X-100) and rocked at 4uC for 10 min. The cells

were centrifuged at 1,3506g for 5 minutes at 4uC and the pellet

resuspended in 5 ml of lysis buffer 2 (10 mM Tris-HCl, pH 8.0,

200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA), rocked at room

temperature for 10 min. The nuclei were pelleted by centrifuging

at 1,3506g for 5 minutes at 4uC. The pellet was resuspended in

5 ml of lysis buffer 3 (10 mM Tris-HCl, pH 8.0, 100 mM NaCl,

1 mM EDTA, 0.5 mM EGTA, 0.1% Na-deoxycholate, 0.5% N-

lauroylsarcosine). The cells were sonicated for 7 cycles of

30 seconds ON and 60 seconds OFF at a power 7 using a sonic

dismembrator Model 100 (Fisher Scientific, Waltham, MA). The

cells were centrifuged at 20,0006g for 10 minutes at 4uC and

50 ml of the supernatant was set aside as the whole cell extract

(WCE). The rest of the supernatant was incubated overnight at

4uC with 100 ml of Dynal Protein G magnetic beads that had been

pre-incubated with either 10 mg RNA polymerase II antibody

(Abcam, Cambridge, MA) or 10 mg E2F-4 antibody (Santa Cruz

Biotechnology, Santa Cruz, CA). The beads were washed 7 times

in RIPA buffer (50 mM Hepes-KOH pH 7.6, 500 mM LiCl,

1 mM EDTA pH 8.0, 1% NP-40, 0.7% Na-deoxycholate) and

once in Tris-EDTA containing 50 mM NaCl. Elution was done in

elution buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA pH 8.0,

1% SDS) for 15 min at 65uC. Reversal of crosslinks of the

immunoprecipitate (IP) and the WCE was done at 65uC overnight.

Cellular RNA was digested with 0.2 mg/ml RNaseA (Invitrogen)

at 37uC for 2 h followed by protein digestion with 0.2 mg/ml

proteinase K (Invitrogen) at 55uC for 30 min. The DNA was

purified by phenol:chloroform:isoamyl alcohol extraction and

ethanol precipitation. Purified DNA was blunted using T4 DNA

polymerase (New England Biolabs, Ipswich, MA) and ligated to

2 mM linkers using T4 DNA ligase (New England Biolabs). The IP

and the WCE was amplified in two stages of PCR and purified by

phenol:chloroform:isoamyl alcohol extraction and ethanol precip-

itation. 2 mg each of IP and WCE was labeled with Cy5-dUTP

and Cy3-dUTP (Perkin Elmer, Waltham, MA) respectively.

Labeling was carried out by random-primed Klenow-based
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extension using the CGH Labeling kit (Invitrogen). The samples

were cleaned up using Invitrogen’s CGH columns included in the

kit. 5 mg each of IP and WCE were combined with cot-1 DNA

and the 106blocking agent and 26hybridization buffer supplied

in the Agilent Oligo aCGH/ChIP-on-chip Hybridization Kit

(Agilent, Santa Clara, CA). Hybridization was carried out in

Agilent’s SureHyb chambers at 65uC for 40 h in the DNA

Microarray Hybridization Oven (Agilent). The slides were washed

using Oligo aCGH/ChIP-on-chip wash buffer 1 and 2 (Agilent)

and scanned in the DNA microarray scanner (Agilent). The

scanned images were processed using Agilent’s Feature Extraction

software version 9.5.3

ChIP-seq data
Marson et al. [14] recently published a study where they

combined different ChIP-seq datasets for multiple DNA binding

proteins (or modifications of them) to unravel the transcriptional

machinery of the miRNA genes in mouse and human cells. We

analyzed their human dataset with our CPPP and compared their

results with ours. Their original dataset contained TSSs associated

with 101 intergenic miRNA genes or gene clusters. We excluded

19 of them from this analysis, because we found them to either

overlap with promoters of protein coding genes (10 TSSs) or were

located downstream of the corresponding miRNA gene (4 TSSs)

or there were genes found between the miRNA gene and the TSS

prediction (5 genes; see Supplementary Data.) We also converted the

coordinates to the current version of the human genome (hg18)

using the liftOver utility of the UCSC Genome Browser [52]. This

caused the miRNA-TSS distances to change significantly (more

than 50 bp) for 7 of the 101 genes.

miRNA Location Array Design
The miRNA location array was custom-made by Agilent with

AMADID (Agilent Microarray Design Identifier) 014119. The

array is available on the 44 K design. The probes tile 100 Kb

regions (,200 bp spacing) surrounding each miRNA and only in

non-repeat masked regions. The probes are 45–60-mers, Tm

balanced and map to the Hg17 database. There are 41585 probes

from ,164 miRNA intervals. Control probes such as GD (gene

desert), intensity controls (LACC) and some negative controls were

also included.

Analysis of ChIP-chip Data
Median normalization of the log2 values of the ratio of signal to

mock (precipitated DNA without antibody) was performed across

the three-ChIP-chip arrays followed by a mean centralization to 0.

Regions of Pol II binding were identified by the ChIPOTle sliding

window method [22]; a window size of 1 Kb was used with a step

size of 50 bp. The window was reported as significant if the p-value

was below 0.05 after adjustment by the conservative Bonferroni

correction method for multiple testing. Overlapping significant

windows were combined and the region with the lowest p-value

was reported.

Gene Coordinate and Sequence Collection
Pol II core promoters were extracted from two databases:

Eukaryotic Promoter Database [48] and DBTSS [53]. Between

the two databases there were 3,015 unique human TSSs (1,744

from Eukaryotic Promoter Database and 1,271 from DBTSS as

originally identified by Zhou et al [12]). The core promoter regions

were partitioned into 1,445 that contained CpG islands and 1,570

that did not according to the method and threshold used in Zhao et

al [21]. For the training and testing of the various SVM models the

area [2450, +50] surrounding the TSS was used as the positive

dataset. An equal number of 500 bp genomic sequences,

randomly selected from the intergenic regions of all chromosomes

were used as the negative dataset for the CpG2 model. A second

set of sequences was collected as described by Zhao et al. [21] This

dataset had GC content similar to the CpG island promoter

dataset and was used as negative dataset for the CpG2 model.

Special care was given so that the randomly selected regions were

not located within 3 Kb from the 59 end of any annotated gene.

Genomic coordinates for all mRNA TSSs, mRNA introns and

miRNA were collected from the UCSC table browser [24,25].

Intragenic miRNAs were identified as those found within an

intron, exon or UTR of a mRNA and transcribed in the same

orientation. All other miRNAs were labeled as intergenic.
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