313 research outputs found

    Between adaptation and virulence:A proteomics view on Staphylococcus aureus infections

    Get PDF
    Staphylococcus aureus is one of the commonly encountered bacteria of the human microbiome. Although mostly a seemingly harmless commensal microbe, S. aureus can act as an invasive pathogen with seriously devastating effects on its host’s health and wellbeing. A wide range of infections caused by this bacterium has been reported to affect diverse parts of the human body, including the skin, soft tissues and bones, as well as important organs like the heart, kidneys and lungs. Particularly, S. aureus is infamous for being a major causative agent of respiratory tract infections that may escalate up to necrotizing pneumonia. Due to its clinical relevance, this pathogen has been intensively studied for many years. Nonetheless, further research in this field is still needed, because of the high capacity of S. aureus to evolve drug resistance, its high genomic plasticity and adaptability and, not in the last place, the plethora of niches within the human body where it can thrive and survive. In this regard, there are still many uncertainties concerning the specific adaptations carried out by S. aureus during colonization and infection of the human body, the transition between both stages, and upon the invasion of different types of host cells. To shed more light on some of these adaptations, the research described in this thesis has employed in vitro models of infection that mimic particular conditions during the infectious process with special focus on the lung epithelium. The adaptations displayed by S. aureus were monitored using advanced proteomics. Furthermore, the analyses documented in this thesis included S. aureus strains with diverse backgrounds and epidemiology to take into account the genetic diversity encountered in this species.Staphylococcus aureus ist eines der am häufigsten vorkommenden Bakterien im menschlichen Mikrobiom. Auch wenn sich S.aureus meist eher harmlos verhält, kann diese Mikrobe als invasiver Krankheitserreger bedrohliche Auswirkungen auf die Gesundheit und das Wohlbefinden von Patienten haben. Ein breites Spektrum an Infektionen, die durch dieses Bakterium ausgelöst werden, kann verschiedenste Körperteile des Menschens wie Haut, Weichteile und Knochen, sowie Lebenswichtige Organe wie das Herz, die Nieren und die Lunge betreffen. S. aureus ist insbesondere als ein Haupterreger von Atemwegsinfekten bekannt, welche sich bis zu einer nekrotisierenden Lungenentzündung entwickeln können. Aufgrund seiner klinischen Bedeutung wird dieser Kranksheitserrger bereits seit Jahren intensiv untersucht. Dennoch ist eine Erforschung von S. aureus wegen dessen Fähigkeiten Antibiotikaresistenzen zu entwickeln, der hohen genomischen Plastizität und Anpassungsfähigkeit und nicht zuletzt, der Vielzahl an Nischen im menschlichen Körper, wo es gedeihen und überleben kann, weiter notwendig. Die spezifischen Anpassungen von S. aureus während der Besiedlung und Kolonisierung des menschlichen Körpers, während des Übergangs zwischen diesen beiden Phasen sowie nach Eindringen in verschiedene Wirtszelltypen sind bisher nur unvollständig aufgeklärt. Um im Rahmen dieser Doktorabeit einige Einblicke in diese Anpassungen zu erhalten, wurden in vitro Infektionsmodelle eingesetzt, die bestimmte Bedingungen des Infektionsprozesses speziell im Lungenepithel widerspiegeln. Diese Anpassungen von S. aureus wurden mittels moderner Proteomanalysen untersucht. Weiterhin wurden im Rahmen dieser Arbeit S. aureus Stämme verschiedenen Ursprungs in die Analysen einbezogen, um auch die genetische Vielfalt dieser Spezies zu berücksichtigen

    Interaction of Staphylococcus aureus and Host Cells upon Infection of Bronchial Epithelium during Different Stages of Regeneration

    Get PDF
    The primary barrier that protects our lungs against infection by pathogens is a tightly sealed layer of epithelial cells. When the integrity of this barrier is disrupted as a consequence of chronic pulmonary diseases or viral insults, bacterial pathogens will gain access to underlying tissues. A major pathogen that can take advantage of such conditions is Staphylococcus aureus, thereby causing severe pneumonia. In this study, we investigated how S. aureus responds to different conditions of the human epithelium, especially nonpolarization and fibrogenesis during regeneration using an in vitro infection model. The infective process was monitored by quantification of the epithelial cell and bacterial populations, fluorescence microscopy, and mass spectrometry. The results uncover differences in bacterial internalization and population dynamics that correlate with the outcome of infection. Protein profiling reveals that, irrespective of the polarization state of the epithelial cells, the invading bacteria mount similar responses to adapt to the intracellular milieu. Remarkably, a bacterial adaptation that was associated with the regeneration state of the epithelial cells concerned the early upregulation of proteins controlled by the redox-responsive regulator Rex when bacteria were confronted with a polarized cell layer. This is indicative of the modulation of the bacterial cytoplasmic redox state to maintain homeostasis early during infection even before internalization. Our present observations provide a deeper insight into how S. aureus can take advantage of a breached epithelial barrier and show that infected epithelial cells have limited ability to respond adequately to staphylococcal insults

    There's no place like OM:Vesicular sorting and secretion of the peptidylarginine deiminase of Porphyromonas gingivalis

    Get PDF
    The oral pathogen Porphyromonas gingivalis is one of the major periodontal agents and it has been recently hailed as a potential cause of the autoimmune disease rheumatoid arthritis. In particular, the peptidylarginine deiminase enzyme of P. gingivalis (PPAD) has been implicated in the citrullination of certain host proteins and the subsequent appearance of antibodies against citrullinated proteins, which might play a role in the etiology of rheumatoid arthritis. The aim of this study was to investigate the extracellular localization of PPAD in a large panel of clinical P. gingivalis isolates. Here we show that all isolates produced PPAD. In most cases PPAD was abundantly present in secreted outer membrane vesicles (OMVs) that are massively produced by P. gingivalis, and to minor extent in a soluble secreted state. Interestingly, a small subset of clinical isolates showed drastically reduced levels of the OMV-bound PPAD and secreted most of this enzyme in the soluble state. The latter phenotype is strictly associated with a lysine residue at position 373 in PPAD, implicating the more common glutamine residue at this position in PPAD association with OMVs. Further, one isolate displayed severely restricted vesiculation. Together, our findings show for the first time that neither the major association of PPAD with vesicles, nor P. gingivalis vesiculation per se, are needed for P. gingivalis interactions with the human host

    A global Staphylococcus aureus proteome resource applied to the in vivo characterization of host-pathogen interactions.

    Get PDF
    Data-independent acquisition mass spectrometry promises higher performance in terms of quantification and reproducibility compared to data-dependent acquisition mass spectrometry methods. To enable high-accuracy quantification of Staphylococcus aureus proteins, we have developed a global ion library for data-independent acquisition approaches employing high-resolution time of flight or Orbitrap instruments for this human pathogen. We applied this ion library resource to investigate the time-resolved adaptation of S. aureus to the intracellular niche in human bronchial epithelial cells and in a murine pneumonia model. In epithelial cells, abundance changes for more than 400 S. aureus proteins were quantified, revealing, e.g., the precise temporal regulation of the SigB-dependent stress response and differential regulation of translation, fermentation, and amino acid biosynthesis. Using an in vivo murine pneumonia model, our data-independent acquisition quantification analysis revealed for the first time the in vivo proteome adaptation of S. aureus. From approximately 2.15 × 1

    A Secreted Bacterial Peptidylarginine Deiminase Can Neutralize Human Innate Immune Defenses

    Get PDF
    The keystone oral pathogen Porphyromonas gingivalis is associated with severe periodontitis. Intriguingly, this bacterium is known to secrete large amounts of an enzyme that converts peptidylarginine into citrulline residues. The present study was aimed at identifying possible functions of this citrullinating enzyme, named Porphyromonas peptidylarginine deiminase (PPAD), in the periodontal environment. The results show that PPAD is detectable in the gingiva of patients with periodontitis, and that it literally neutralizes human innate immune defenses at three distinct levels, namely bacterial phagocytosis, capture in neutrophil extracellular traps (NETs), and killing by the lysozyme-derived cationic antimicrobial peptide LP9. As shown by mass spectrometry, exposure of neutrophils to PPAD-proficient bacteria reduces the levels of neutrophil proteins involved in phagocytosis and the bactericidal histone H2. Further, PPAD is shown to citrullinate the histone H3, thereby facilitating the bacterial escape from NETs. Last, PPAD is shown to citrullinate LP9, thereby restricting its antimicrobial activity. The importance of PPAD for immune evasion is corroborated in the infection model Galleria mellonella, which only possesses an innate immune system. Together, the present observations show that PPAD-catalyzed protein citrullination defuses innate immune responses in the oral cavity, and that the citrullinating enzyme of P. gingivalis represents a new type of bacterial immune evasion factor.IMPORTANCE Bacterial pathogens do not only succeed in breaking the barriers that protect humans from infection, but they also manage to evade insults from the human immune system. The importance of the present study resides in the fact that protein citrullination is shown to represent a new bacterial mechanism for immune evasion. In particular, the oral pathogen P. gingivalis employs this mechanism to defuse innate immune responses by secreting a protein-citrullinating enzyme. Of note, this finding impacts not only the global health problem of periodontitis, but it also extends to the prevalent autoimmune disease rheumatoid arthritis, which has been strongly associated with periodontitis, PPAD activity, and loss of tolerance against citrullinated proteins, such as the histone H3

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19

    Get PDF
    SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. Here, we systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in unexposed individuals, exposed family members, and individuals with acute or convalescent COVID-19. Acute-phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent-phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative exposed family members and convalescent individuals with a history of asymptomatic and mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits broadly directed and functionally replete memory T cell responses, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19

    First results from the AugerPrime Radio Detector

    Get PDF
    corecore