377 research outputs found

    Prediction of lignin content in ruminant diets and faecal samples using rapid analytical techniques

    Get PDF
    The measurement of lignin content in ruminant diet and faecal samples is important for 2 digestibility studies, but it is typically time consuming and costly. The work reported 3 involved correlation of traditional wet chemistry data with that from three rapid instrumental 4 techniques, Fourier Transform Infrared spectroscopy (FTIR), Conventional 5 Thermogravimteric Analysis (TGA) and High Resolution TGA (MaxRes TGA) to predict 6 lignin content of diets and faeces from digestibility trials. Calibration and performance data 7 indicated that the FTIR model was acceptable for screening whilst the Conventional and 8 MaxRes TGA predictions were of high accuracy for quantitative analysis. Cross validation 9 and model performance data revealed that MaxRes TGA provided the best performing 10 predictive model. This work showed that MaxRes TGA can accurately predict lignin content 11 in ruminant diet and faecal samples with distinct advantages over traditional wet chemistry, 12 namely the requirement for small sample size, ease of sample preparation, speed of analysis 13 and high sample throughput at considerably lower cost

    Quantifying MCPA load pathways at catchment scale using high temporal resolution data

    Get PDF
    Publication history: Accepted - 21 May 2022; Published online - 24 May 2022.Detection of the agricultural acid herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) in drinking water source catchments is of growing concern, with economic and environmental implications for water utilities and wider ecosystem services. MCPA is poorly adsorbed to soil and highly mobile in water, but hydrological pathway processes are relatively unknown at the catchment scale and limited by coarse resolution data. This understanding is required to target mitigation measures and to provide a framework to monitor their effectiveness. To address this knowledge gap, this study reports findings from river discharge and synchronous MCPA concentration datasets (continuous 7 hour and with additional hourly sampling during storm events) collected over a 7 month herbicide spraying season. The study was undertaken in a surface (source) water catchment (384 km2—of which 154 km2 is agricultural land use) in the cross-border area of Ireland. Combined into loads, and using two pathway separation techniques, the MCPA data were apportioned into event and baseload components and the former was further separated to quantify a quickflow (QF) and other event pathways. Based on the 7 hourly dataset, 85.2 kg (0.22 kg km 2 by catchment area, or 0.55 kg km 2 by agricultural area) of MCPA was exported from the catchment in 7 months. Of this load, 87.7 % was transported via event flow pathways with 72.0 % transported via surface dominated (QF) pathways. Approximately 12 % of the MCPA load was transported via deep baseflows, indicating a persistence in this delayed pathway, and this was the primary pathway condition monitored in a weekly regulatory sampling programme. However, overall, the data indicated a dominant acute, storm dependent process of incidental MCPA loss during the spraying season. Reducing use and/or implementing extensive surface pathway disconnection measures are the mitigation options with greatest potential, the success of which can only be assessed using high temporal resolution monitoring techniques.This work was carried out as part of Source to Tap (IVA5018), a project supported by the European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB)

    Nutrient status of cattle grazing systems in the western brazilian Amazon.

    Get PDF
    Low-input cultivated pastures to feed cattle have dominated land use after forest clearing for decades in the western Brazilian Amazon. This study was undertaken to help understand the inherent nutrient supply dynamics underwriting cattle performance on three farms in the state of Acre. We assessed soil chemical and physical properties associated over time with different land uses following forest clearing. This information permitted specifying a conceptual model of nutrient stocks and flows under the observed grazing system, which produced insights about the dynamics of soil nutrient degradation. Above ground forage mass, topsoil nutrient concentrations and soil bulk density were measured. Land covers were Brachiaria spp. grasses, a grass-Pueraria phaseoloides mix, cropland and forest. Most soil nutrient parameters initially decreased after clearing, gradually recovering over time with grass-only pastures; however, 20 yr-old pastures had 20% less forage mass. Most pasture system nutrients on these farms resided in topsoil and roots, where large stocks of mature forage supported soil fertility with recycled nutrients from litter. Estimates of partial topsoil nutrient balances were negative. This suggested that corresponding nutrient stocks and the accumulation of forage mass were probably maintained primarily through the sum of inflows from cattle excreta, the subsoil, soil organic matter, and litter mineralization with scant input of commercial fertilizer. Therefore, herd management to increase animal system productivity via higher stocking rates on vegetatively younger forage requires monitoring of nutrient stocks and flows and fertilization that assures replenishment of the nutrients extracted. Otherwise, rapid depletion of soil nutrient stocks will lead to system degradation and failure

    The Importance of Consistent Global Forest Aboveground Biomass Product Validation

    Get PDF
    Several upcoming satellite missions have core science requirements to produce data for accurate forest aboveground biomass mapping. Largely because of these mission datasets, the number of available biomass products is expected to greatly increase over the coming decade. Despite the recognized importance of biomass mapping for a wide range of science, policy and management applications, there remains no community accepted standard for satellite-based biomass map validation. The Committee on Earth Observing Satellites (CEOS) is developing a protocol to fill this need in advance of the next generation of biomass-relevant satellites, and this paper presents a review of biomass validation practices from a CEOS perspective. We outline the wide range of anticipated user requirements for product accuracy assessment and provide recommendations for the validation of biomass products. These recommendations include the collection of new, high-quality in situ data and the use of airborne lidar biomass maps as tools toward transparent multi-resolution validation. Adoption of community-vetted validation standards and practices will facilitate the uptake of the next generation of biomass products

    Species-specific, pan-European diameter increment models based on data of 2.3 million trees

    Get PDF
    ResearchBackground: Over the last decades, many forest simulators have been developed for the forests of individual European countries. The underlying growth models are usually based on national datasets of varying size, obtained from National Forest Inventories or from long-term research plots. Many of these models include country- and location-specific predictors, such as site quality indices that may aggregate climate, soil properties and topography effects. Consequently, it is not sensible to compare such models among countries, and it is often impossible to apply models outside the region or country they were developed for. However, there is a clear need for more generically applicable but still locally accurate and climate sensitive simulators at the European scale, which requires the development of models that are applicable across the European continent. The purpose of this study is to develop tree diameter increment models that are applicable at the European scale, but still locally accurate. We compiled and used a dataset of diameter increment observations of over 2.3 million trees from 10 National Forest Inventories in Europe and a set of 99 potential explanatory variables covering forest structure, weather, climate, soil and nutrient deposition. Results: Diameter increment models are presented for 20 species/species groups. Selection of explanatory variables was done using a combination of forward and backward selection methods. The explained variance ranged from 10% to 53% depending on the species. Variables related to forest structure (basal area of the stand and relative size of the tree) contributed most to the explained variance, but environmental variables were important to account for spatial patterns. The type of environmental variables included differed greatly among species. Conclusions: The presented diameter increment models are the first of their kind that are applicable at the European scale. This is an important step towards the development of a new generation of forest development simulators that can be applied at the European scale, but that are sensitive to variations in growing conditions and applicable to a wider range of management systems than before. This allows European scale but detailed analyses concerning topics like CO2 sequestration, wood mobilisation, long term impact of management, etcinfo:eu-repo/semantics/publishedVersio

    Dynamic liquefaction of shear zones in intact loess during simulated earthquake loading

    Get PDF
    The 2010-2011 Canterbury earthquake sequence in New Zealand exposed loess-mantled slopes in the area to very high levels of seismic excitation (locally measured as >2 g). Few loess slopes showed permanent local downslope deformation, and most of these showed only limited accumulated displacement. A series of innovative dynamic back pressured shear-box tests were undertaken on intact and remoulded loess samples collected from one of the recently active slopes replicating field conditions under different simplified horizontal seismic excitations. During each test, the strength reduction and excess pore water pressures generated were measured as the sample failed. Test results suggest that although dynamic liquefaction could have occurred, a key factor was likely to have been that the loess was largely unsaturated at the times of the large earthquake events. The failure of intact loess samples in the tests was complex and variable due to the highly variable geotechnical characteristics of the material. Some loess samples failed rapidly as a result of dynamic liquefaction as seismic excitation generated an increase in pore-water pressure, triggering rapid loss of strength and thus of shear resistance. Following initial failure, pore pressure dissipated with continued seismic excitation and the sample consolidated, resulting in partial shear-strength recovery. Once excess pore-water pressures had dissipated, deformation continued in a critical effective stress state with no further change in volume. Remoulded and weaker samples, however, did not liquefy, and instead immediately reduced in volume with an accompanying slower and more sustained increase in pore pressure as the sample consolidated. Thereafter excess pressures dissipated and deformation continued at a critical state. The complex behaviour explained why, despite exceptionally strong ground shaking, there was only limited displacement and lack of run-out: dynamic liquefaction was unlikely to occur in the freely draining slopes. Dynamic liquefaction however remained a plausible mechanism to explain loess failure in some of the low-angle toe slopes, where a permanent water table was present in the loess
    • …
    corecore