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Abstract

Background: Over the last decades, many forest simulators have been developed for the forests of individual
European countries. The underlying growth models are usually based on national datasets of varying size, obtained
from National Forest Inventories or from long-term research plots. Many of these models include country- and
location-specific predictors, such as site quality indices that may aggregate climate, soil properties and topography
effects. Consequently, it is not sensible to compare such models among countries, and it is often impossible to
apply models outside the region or country they were developed for. However, there is a clear need for more
generically applicable but still locally accurate and climate sensitive simulators at the European scale, which requires
the development of models that are applicable across the European continent. The purpose of this study is to
develop tree diameter increment models that are applicable at the European scale, but still locally accurate. We
compiled and used a dataset of diameter increment observations of over 2.3 million trees from 10 National Forest
Inventories in Europe and a set of 99 potential explanatory variables covering forest structure, weather, climate, soil
and nutrient deposition.

Results: Diameter increment models are presented for 20 species/species groups. Selection of explanatory variables
was done using a combination of forward and backward selection methods. The explained variance ranged from
10% to 53% depending on the species. Variables related to forest structure (basal area of the stand and relative size
of the tree) contributed most to the explained variance, but environmental variables were important to account for
spatial patterns. The type of environmental variables included differed greatly among species.

Conclusions: The presented diameter increment models are the first of their kind that are applicable at the
European scale. This is an important step towards the development of a new generation of forest development
simulators that can be applied at the European scale, but that are sensitive to variations in growing conditions and
applicable to a wider range of management systems than before. This allows European scale but detailed analyses
concerning topics like CO, sequestration, wood mobilisation, long term impact of management, etc.
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Background

The EU has a vision of sustainable forestry contributing
to the economy of its Member States and to the envir-
onment—both regionally and globally. In the latter con-
text, the role of forests in biodiversity conservation and
climate change mitigation as well as raw material
provision has become increasingly important through
the United Nations Convention on Biological Diversity
(CBD) and the United Nations Framework Convention
on Climate Change (UNFCCC). Forests in the EU’s 28
Member States stretch over a huge variety from the At-
lantic in the west to the Black Sea in the east, and from
the Mediterranean in the south to the boreal in the
north covering 157 million ha (FOREST EUROPE 2015).
Forest management has evolved at a national or sub-
national level influenced by the quantity and nature of
the forest resources available, forecasts on their future
development, perceived demand for raw material and
services, and local economic and social factors. The
management of forest resources has been affected in re-
cent years by substantial shifts in the demands and ex-
pectations put on forests, while the forest resource itself
is subject to new pressures which are not yet sufficiently
taken into account in national or international policies.

These pressures include diseases, invasive species,
and the effects of climate change on forests through,
e.g. drought, and storms (Lindner et al. 2014). Many
forests continue to provide the traditional forest prod-
ucts of timber, pulp, paper, etc., but forested areas are
also expected to provide important ecosystem services,
including climate change mitigation, conservation of bio-
diversity, recreation and protection of water and soil
(Nabuurs et al. 2006; Verkerk et al. 2011). A key policy
issue is how the existing and future forests in the EU,
which are limited in size and have a fragmented owner-
ship, should be managed to deliver in a sustainable way an
optimal mix of social, environmental (including biodiver-
sity conservation) and economic services. These uncer-
tainties plus a long planning horizon in forestry, require
us to predict the long term impacts of management and
environmental changes. One avenue is the employment of
resource projection models (Barreiro et al. 2017).

Making scenario projections of European forests is a
hugely challenging task. Not only do they cover a large
range of biotic and abiotic conditions, but they are
spread over 46 countries, each with their own (forest)
policies, inventory systems (Tomppo et al. 2010) and
national forest resource projection systems (Barreiro
et al. 2016; Barreiro et al. 2017). National forest in-
ventory systems (NFIs), if existing at all, differ consider-
ably in design, size thresholds, definitions, estimation
methods, census interval, and importantly, in data access
policy. A few countries have made their raw measure-
ments available on the web (Netherlands, Germany,
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France, Spain), a few make them available on request (e.g.
Norway, Sweden), but still most results are only available
in aggregated tables and reports. Even when the data are
accessible, standardisation and harmonisation between
NFIs remains difficult (Kohl et al. 2000; McRoberts et al.
2009; Dunger et al. 2012). Data collection efforts like
FOREST EUROPE (FOREST EUROPE 2015) and the
Global Forest Resource Assessments by FAO (FAO 2015)
try to improve the harmonisation, but it remains a chal-
lenge (COSTE43 2011). National forest resource projection
systems show an even larger variety in design, methodolo-
gies, processes and update cycles (Barreiro et al. 2016;
Barreiro et al. 2017), which makes it almost impossible to
compare projections among countries.

Resource projections for Europe show different ap-
proaches for handling the harmonisation challenge. For
a long time, the European Timber Trend Studies
(ETTS) as published by the UNECE/FAO were a
collection of nationally executed projections of a set of
standardised scenarios (Schelhaas et al. 2017). Nilsson
et al. (1992) were the first to use a common, empirical
projection tool applied country-wise on aggregated
national forest inventory data. Since then, the same
age-volume class matrix approach was developed and
commonly applied as EFISCEN (European Forest Infor-
mation Scenario model) in studies down to provincial
resolution for the total European scale (Nabuurs et al.
2006; Schelhaas et al. 2015; Verkerk et al. 2016) for
carbon balance studies, wood availability and e.g. trade-
offs with biodiversity. Also, other models like CBM-
CFS3 are being employed for European forest carbon
balance assessments (Pilli et al. 2016).

When the first European-scale forest resource
models were developed, the approach chosen matched
best with the predominant forest management approach
in Europe (mostly even-aged management), the data
availability (only aggregated data available), the issues to
be addressed (large-scale resource availability, Member
State level carbon sequestration) and the computing
power available. In the meantime, the situation has chan-
ged drastically. Forestry is now increasingly incorporating
natural processes taking into account effects of climate
change on growth (Peng 2000) as well as the fulfilment of
forest functions other than wood production (Verkerk
2015). As a consequence, the forests are becoming more
heterogeneous in species and structure (Hector and
Bagchi 2007; Morin et al. 2011; Zhang et al. 2012), and a
larger range of management options need to be consid-
ered (Duncker et al. 2012; Hengeveld et al. 2012).

At the same time, the data policies are becoming more
open and the computing power has increased dramatic-
ally. These developments are reflected in the construc-
tion of more complex national projection models, often
simulating individual trees, with high geographical detail



Schelhaas et al. Forest Ecosystems (2018) 5:21

and usually based on NFI data (Barreiro et al. 2016),
sometimes capable of incorporating anticipated future
growth changes. These tools are usually not transferable
to other countries because they are developed on very
specific national conditions and datasets. However, a
clear need can be identified for such simulation tools at
the European level (Schelhaas et al. 2017). Such a tool
should be able to 1) cover a wide range of biotic and abi-
otic conditions, 2) have growth models sensitive to chan-
ging environments, 3) be sensitive to varying forest
systems and forest management approaches, and 4) be
age-independent and have a high geographical detail. In
this paper, we aim to develop a set of empirical individual-
tree growth models that could be used in such a model at
the European scale.

Methods

National forest inventory data

We collected individual tree measurements from avail-
able National Forest Inventories to represent the range
in growing conditions in Europe (Fig. 1). We included
NFI data from Norway (Tomter et al. 2010), Sweden
(Fridman et al. 2014), Netherlands (Schelhaas et al.
2014; Oldenburger and Schoonderwoerd 2016),
Germany (Riedel et al. 2016), a part of Ireland (Redmond
2016), Poland (Anonymous 2015), France (Hervé 2016),
Switzerland (Lanz et al. 2016), Spain (Alberdi et al.
2016) and the Italian regions Piemonte (Camerano et al.
2008) and Aosta (Camerano et al. 2007). NFI systems
differ in terms of inventory cycles, sampling system, plot
radius, diameter threshold etc. (Table 1). Germany uses
an angle count method (Bitterlich 1952), while other
countries use a design with circular plots, either with a
variable radius depending on the plot conditions, or with
different radii with corresponding diameter thresholds.
In total, observations were available for more than 2.3
million trees on over 190,000 plots, from 10 different
NFIs. Except for France and the two Italian regions, data
consisted of repeated tree diameter observations from
permanent sample plots. Tree data included observation
of diameter at breast height (DBH, hereafter simply
referred to as diameter; all countries use a breast height
of 1.3 m) during two consecutive measurements and
identification of the tree species, for all trees that were
alive both at the first and second observation.

In France, increment was recorded as the width of the
last 5 tree rings as measured on a core, for all trees on
the plot. In the two Italian regions, increment was avail-
able as the 10-year radial increment of the tree closest to
the plot centre, as measured on a core. Radial increment
from tree core data was converted to diameter incre-
ment (France, the two Italian regions). For these coun-
tries we considered the measured diameter increment in
the past as a prediction of the diameter increment in the
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years after the observation, i.e. we did not reconstruct
the diameter 5 or 10 years ago as starting point for the
analysis. We chose this approach because plot basal area
is one of the potential explanatory variables, and we
didn’t have sufficient information to reconstruct plot
basal area in the past. Tree circumference as measured
in France was converted to diameter. All observations
were converted to annual diameter increment by divid-
ing the total diameter increment by the number of years
between the measurements, using the YEARFRAC func-
tion in Excel. Occasional observations of negative diam-
eter change were assumed to result from unbiased
measurement errors, therefore these negative diameter
changes were kept to avoid introducing bias.

We grouped the tree species in 20 species groups
(Table 2). Minor species or species groups were itera-
tively merged until sufficiently large groups remained.
Species or species groups were retained if they cov-
ered at least 5% of the total dataset over all countries,
or if they were considered as an important species in
a certain region of Europe, either in terms of production
(like poplar plantations) or in coverage (like Quercus ilex
(L.) and Quercus suber (L.) in the Mediterranean region).
The group ‘Populus plantations’ includes only Populus
species and hybrids that are commonly used in commer-
cial plantations while other Populus species are included
in the category ‘shortlived broadleaves’. For completeness
in view of intended model application, ‘rest’ groups were
created for broadleaves and conifers. For broadleaves
the rest category was split into shortlived and longlived
species based on authors’ judgement.

Explanatory variables

We constructed a set of potential explanatory variables,
covering information on the forest structure (F), soil (S),
climate (C), weather (W) and nutrient deposition (D).
Forest structure was represented by stand basal area at
the time of first measurement as delivered by the differ-
ent NFIs, and the variable F-rDiffDq, a proxy for the
social position of each tree within the stand defined as:

F — rDiffDq = DBH /DBHq-1 (1)

with DBH the diameter of the tree and DBH(q the quad-
ratic mean diameter of all trees on the plot at the first
observation. Values smaller than zero indicate that the
tree is relatively small and more likely to be suppressed,
while values larger than zero indicate that the tree is
more likely to be dominant.

Soil, climate, weather and nutrient deposition variables
were derived from data sets with full European coverage,
using the plot coordinates. To derive soil characteristics,
we used the 1 km resolution SoilGrids dataset (Hengel
et al. 2014). This dataset covers soil pH, sand/silt/clay
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Fig. 1 NFI plot locations
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fraction, depth to bedrock, bulk density, cation exchange
capacity (CEC), soil organic fraction and fraction of
coarse fragments. The dataset consists of estimates of
the respective properties at 7 depths ranging from 0
to 200 cm. We only used the third depth (15 cm),
since the values at different depths were highly corre-
lated. We also included a map with natural soil sus-
ceptibility to compaction from the European Soil Data
Centre (Panagos et al. 2012).

To derive climate characteristics, we used the World-
Clim (Hijmans et al. 2005) and the GEnS (Metzger et al.
2013, based on the WorldClim (Hijmans et al. 2005) and
CGIAR-CSI data (Trabucco et al. 2008; Zomer et al.
2008)) datasets. Both datasets cover a range of climatic
variables and indices (like monthly and annual means and
extremes for temperature and precipitation, temperature
and precipitation in coldest/warmest/wettest driest quarter

or summer/winter, several aridity and humidity indices,
etc.), averaged for the period 1950-2000, at 1 km reso-
lution. The datasets partly overlap but each set has some
unique variables. Altitude correlates with weather and
climate variables and is often included as predictor in simi-
lar studies. However, the inclusion of altitude makes it
impossible to include climate change effects directly in the
model and thus we excluded it from the predictor set. For
the same reason, latitude was not included either.

For nutrient deposition we used the EMEP data, con-
taining deposition of oxidised and reduced nitrogen and
oxidised sulphur at the 50 km grid (www.emep.int).
Average nutrient deposition values were calculated for
the period 1990-2010.

For weather, we obtained data from Agri4Cast (http://
agri4cast.jrc.ec.europa.eu/), at 25 km resolution for the
period 1975-2015. We used this dataset to calculate a
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Table 1 Overview of the NFI datasets used and their most important features

Country/Region Inventory  Inventory dates Mean census Number of Plot radius (m) Diameter threshold (cm) Comment NTrees
cycle interval (years) plots
France NFI5-6 2005-2012 5 (core of all trees 50,404 15 75 474,588
on the plot)
Germany NFIT/NFI2 1986 — 1989/ 14.3 10,344 angle count 137425
2000-2002 method
Germany NFI2/NFI3 2002-2012 10.2 17,604 angle count 272,034
method
[taly - Piemonte 1999-2004 10 (core from 1 13,192 variable 75 DBH rounded 13,192
tree per plot) (8-15m) to cm
Italy - Aosta 1992-1994 10 (core from 1 1691 variable 75 DBH rounded 1691
tree per plot) (8-15m) to cm
Ireland NFIT/NFI2  2004-2006/ 6.1 577 3/7/12.62 7/12/20 8859
2009-2012
Netherlands NFI5/NFI6  2001-2005/ 9.5 1235 variable 5 18,348
2012-2013 (5-20 m)
Norway NFI9/NFIT0  2004-2008/ 5 9243 892 5 201,484
2009-2013
Poland NFIT/NFI2  2005-2009/ 5 17,488 variable (798, 7 350,487
2010-2014 11.28 or 12.62)
Spain NFI2/NFI3 1986-1995/ 1.2 50,957 5/10/15/25 7.5/12.5/22.5/42.5 557,848
1996-2008
Sweden NFI7-8/ 2005-2009/ 5 14,833 3.5/10 4/10 246,852
NFI8-9 2010-2014
Switzerland NFI2/NFI3 1993-1996/ 109 5217 8/126 (inflat  12/36 DBH rounded 49,192
2004-2006 terrain) down to cm
Total 1986-2014 192,785 2,332,000

Multiple diameter thresholds indicate a design with plots consisting of concentric circles with their radii and the corresponding thresholds

range of weather indices (similar to the climate indices)
for the actual observation period of each tree in our
dataset. See Appendix 1 for more information on wea-
ther indices and calculation procedures. In total we
included 99 abiotic explanatory variables (for a full list
see Appendix 2).

To avoid simultaneous use of explanatory variables
with large correlations in the models, we made a selec-
tion among variables with correlations greater than 0.8
or smaller than - 0.8. This selection was based on scores
that preferred simpler variables over more complicated
ones (like average temperature over degree days above a
certain threshold), weather variables over climate and
easily available ones over those that are usually more dif-
ficult to obtain. The full list of variables and their prior-
ity in the data preparation is given in Appendix 2.
Exclusion of correlated variables was done for each
species group separately, since the spatial occurrence
pattern of the species influences the observation
range of the explanatory variables. Incomplete cases
in the remaining dataset were removed.

Diameter increment model
Here, we restrict ourselves to modelling the diameter in-
crement. Of all variables measured in the NFIs across

Europe, diameter is probably the most harmonised one,
available for the largest number of trees, available as
repeated observations on the same tree, and directly
measured without further interpretation.

Some authors prefer to use basal area increment
models over diameter increment models (Wykoff 1990;
Quicke et al. 1994; Monserud and Sterba 1996; Schroder
et al. 2002,) but Vanclay (1994) argues that both ap-
proaches are essentially the same, since one can be de-
rived from the other. Tree diameter generally develops
according to an asymmetric sigmoidal function through
time, with a slow, but rapidly increasing growth at estab-
lishment, almost constant growth during the mature
phase followed by a slow decline in growth during sen-
escence (Tomé et al. 2006). Because creating new tree
rings is essential for water transport, diameter increment
will theoretically never reach zero, although the rings
can be very small at old age.

Although age is known to be one of the best predictors
of growth (Pukkala 1989; MacFarlane et al. 2002; Zhao
et al. 2006; Tomé et al. 2006), we explicitly aim to ex-
clude it as a predictor since it is not directly measured
for all trees in the NFIs and forest situations in Eur-
ope. Instead, we selected diameter, which is directly
measured, as the predictor.
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Table 2 Summary of observed characteristics of the species after removing incomplete records

Reason for Number Mean 99th Mean

Mean basal Mean mat (mean Mat Mean tap Tap

inclusion  of trees dbh  percentile increment area annual temperature) standard (total annual standard
(mm) DBH (mm) (mmyr~ Y (m*ha™h (degrees ) deviation precipitation) deviation
(mm-yr~ 1)
Abies spp. A 54,974 340 799 48 384 9.7 15 855 202
Larix spp. A 24,508 332 700 39 315 89 25 871 287
other conifers D 31,063 271 613 54 22.5 11.3 4.0 817 368
Picea abies A 373235 248 635 36 345 7. 28 836 273
Picea sitchensis B 8074 253 554 70 391 10.5 09 983 220
Pinus nigra + mugo C 66,237 239 579 29 217 12.1 1.7 500 189
Other indigenous pines C 204,443 268 580 40 20.5 136 24 563 305
Pinus sylvestris A 529184 237 531 29 28.7 85 2.8 641 152
Pseudotsuga menziesii B 23,070 333 736 7.2 348 10.8 1.1 794 146
Betula spp. A 149484 145 414 1.8 214 59 36 752 220
longlived broadleaves D 199,048 223 673 29 253 11.3 20 726 201
shortlived broadleaves D 109,732 189 589 3.1 27.2 96 3.1 763 215
Castanea sativa C 34,812 287 1114 39 315 124 16 832 227
Eucalyptus spp. B 6770 273 678 79 18.7 15.2 1.3 1014 421
Fagus sylvatica A 163,123 331 807 36 330 10.1 1.5 791 176
Populus plantations B 2513 392 925 9.3 26.5 1.3 1.5 690 155
Quercus ilex C 68,173 237 764 18 122 14.3 2.1 536 156
Quercus robur + petraea A 179,861 335 827 33 287 10.9 16 778 204
Quercus suber @ 20616 319 796 23 16.6 16.3 14 640 161
Robinia pseudoacacia B 10,154 212 551 42 263 11.7 17 783 176

Reason for inclusion of species group: A =more than 5% of total data coverage; B =important commercial species; C = important for regional coverage;

D =rest group

Modelling of sigmoidal relationships is usually
achieved with so-called theoretical growth curves, such
as the Lundqvist (Korf 1939; Stage 1963), Gompertz
(Winsor 1932) and Chapman-Richards (Richards 1959)
functions. Here, we choose the Gompertz function, be-
cause it has the following properties:

1. The function is right-skewed, with a maximum
growth at 1/e times the asymptotic diameter.

2. The derivative of the function with respect to time
(e.g. growth) can be written in a form only
dependent on diameter.

Thus, for estimating diameter increment the derivative
of the Gompertz equation is used:

dDBH
—q ~ PiDBH + B,DBHInDBH + ¢ (2)

with dDBH/dt the diameter increment (in mm), DBH
the diameter (in mm), 5; and S, parameters and ¢ is the
error term with an assumed distribution N~(0, o). These

parameters are a function of a set of independent vari-
ables X; expressed as:

»
By=c+ Z 0;1X; (3)
i1
»
By=c+ Z 0;2Xi (4)
i1

For both ; and f, the variables X; used to estimate
the parameter vectors are the same. The procedure for
the selection of the p variables that best explain the
diameter increment is described later. Values for ¢ and 6
are estimated using ordinary least squares (OLS) by
substituting Eqs. 3 and 4 in Eq. 2.

The diameter when maximum growth occurs is de-
fined by:

_(n 1)
DBH oy = e (ﬁz+ (5)

with a maximum growth equal to:
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dDBH
dt  max

= —fB,DBH ,,; (6)

The census interval in the datasets is overall either
around 5 or 10 years depending on the country. To re-
late the total diameter increment in this varying period
to the diameter using a non-linear model, we use the
average between the two measured diameters as a proxy
for the diameter.

Figure 2 illustrates the shape of the growth model.
A simultaneous increase of f5; and 5, by the same
percentage increases the maximum diameter incre-
ment that can be reached, but leaves the diameter
with maximum diameter increment and the maximum
diameter unchanged. A small relative decrease of f3,
or the same relative increase in S5, lowers the curve
as a whole, resulting in smaller maximum diameter
increment, a smaller diameter of maximum diameter
increment and a smaller maximum diameter that can
be reached.

Variable selection and model fitting

The selection of variables to be included in the model
was performed in two phases for each species inde-
pendently. First, a forward selection procedure was
used. Given the large number of data points, the
dataset was split in a selection-dataset (75%) and an
acceptance-dataset (25%). Variables were added one-
at-a-time. First, using the selection-dataset the add-
itional variables were ranked based on the Akaike in-
formation criterion (AIC, Akaike 1974). Because the
large number of observations bias the AIC towards
ever decreasing values with increasing numbers of
variables, acceptance of the best ranking variable was
subsequently based on an F-test performed on the
predicted values for the acceptance-dataset (Zar
1996). The variables selected for 10 independent data-

9 -
8 -
L7
£ 6
5 5
£ — base
5 4 -
2 e 3, aNd B,+20%
3 3
E y B,-1%
a 21
1 4
0 . r
0 500 1000
Diameter (mm)
Fig. 2 Shape of the growth model with 8, =0.1 and 3,=-0.014
(base), if B1 and B, are increased by 20% and if §; is decreased
by 1%
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splits were combined to obtain a list of candidate var-
iables. Secondly, these candidate variables were used
in a backward selection procedure on the full dataset
for the final selection of explanatory variables. In this
procedure the variable to be excluded was again se-
lected based on AIC and it was actually excluded
based on an F-test. The selected variables were used
to estimate the full set of coefficients of the final
model. The full models (substituting Eqs. 3 and 4 in
Eq. 2) were fitted using OLS in the Im function in R
(R:stats) (R core team 2014). For all F-tests a conser-
vative a-value of 0.0001 was used to avoid overfitting
the data. The average observed diameter increment
was used as reference for calculation of F-tests and
R*, rather than a reference value of 0 as is default
when no intercept is included in the model. Model
residuals showed some heteroscedasticity at small di-
ameters (Additional file 1), but seemed homoscedastic
over a large range of observations. We did not trans-
form our data, which would introduce bias due to the
need to exclude negative observations. In view of the
intended model application we also calculated the R*
of the total predicted basal area increment at plot-
level for all available plots, including all species.

Results

The number of explanatory variables included in the
final diameter increment models ranged between 2 and
25 for all species/species groups (Tables 3 and 4). Vari-
ables of forest structure were always included (Table 4),
weather and climate were included for 18 species, while
soil and nutrient deposition were included for 16 and 13
species, respectively. R*" ranged from 0.10 for Quercus
ilex to 0.53 for other conifers (Table 4). The R*" for total
basal area increment at the plot level was 0.85. Conifers
generally had greater R* than broadleaves (conifers 0.32
on average over all species and broadleaves 0.22). There
was no clear relationship between the number of
variables or variable groups selected and the explained
variance. We tested the contribution to the explained
variance of each group of variables by fitting the full
model again, excluding the variables from that group,
and recorded the decrease in R*’. If forest structural
variables were left out from the model, the explained
variance decreased by 43.9%, on average over all species
groups. If weather variables were left out, the explained
variance decreased by 8.7% and for climate by 3.8%. Soil
and nutrient deposition accounted for respectively 2.2%
and 14% of the explained variance. The weather
variables most often selected were generally related to an-
nual temperature (W-MaT), temperature variations (annual
temperature range W-aTR, mean diurnal range W-MaDR)
or radiation (W-TaR), while less frequently selected vari-
ables tended to include indices and minima and maxima
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Table 3 Selected variables and parameter estimates per species group. For abbreviations of variables see Appendix 2

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X1
X12
X13
X14
X15
X16
xX17
X18
X19

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X1
X12
X13
X14
X15
X16
X17
X18
X19
X20
X21
X22

Abies spp.
9/,1
6.65E-01
F-InBA —6.10E-02
F-rDiffDg 1.36E-02
W-MaT 3.35E-03
W-TaR 1.15E-06
W-aTR —2.83E-03

W-SDmR 233E-05
W-MwagP 3.56E-04

C-MaT —1.62E-04
C-TaP —9.37E-05
C-TaAET 1.29E-04

C-MaDR —8.56E-05
C-seaP —9.66E-04

C-MwemP 2.15E-04
C-MweqT —8.95E-05
S-BLD 1.46E-05
S-CRFVOL —4.75E-04
S-BDRICM 334E-04
D-DepOxN  —1.63E-05
D-DepOxS  241E-06

0
-1.13E-01
9.12E-03
—2.07E-03
—4.90E-04
—8.65E-07
4.20E-04
3.22E-06
—5.39E-05
2.97E-05
1.31E-05
—2.03E-05
2.38E-05
1.34E-04
—2.19E-05
1.21E-05
—1.69E-06
6.38E-05
—4.84E-05
1.84E-06
—249E-07

Pseudotsuga menziesii

6/,1

244E +00
F-InBA ~8.26E-02
F-DiffDg  6.35E-02
C-MaT ~7.39E-04

C-TaAET 4.11E-05
S-CRFVOL 7.72E-04

0
—3.70E-01
1.23E-02
—9.66E-03
1.13E-04
—545E-06
—1.19E-04

F-BA
F-InBA
W-MaT
W-TaR
W-SDmR
W-MwegR
C-TaAET
C-seaP
S-PHIHOX
D-DepRedN
D-DepOxN

Larix spp.
6/,1
3.58E-01
9.60E-04
—861E-02
3.77E-03
—3.61E-05
2.85E-04
446E-05
1.12E-04
2.76E-04
—441E-04
—2.30E-05
—2.65E-05

0
—5.34E-02
—1.59E-04
1.37E-02
—5.82E-04
5.11E-06
—3.92E-05
—7.37E-06
—1.74E-05
—3.87E-05
531E-05
3.89E-06
3.80E-06

Pinus nigra + mugo

F-BA

F-InBA
W-TaP
W-aTR
W-MINmPET
W-MdrgT
W-MwegR
C-seal
C-ISO
C-MweqT
S-PHIHOX
S-ORCDRC
D-DepRedN

O
5.86E-01
—1.90E-04
—3.09E-02
—1.49E-05
—4.02E-03
—245E-03
1.51E-03
—1.56E-04
—2.33E-05
9.18E-04
—1.30E-04
—1.47E-03
—4.82E-04
—1.87E-05

02
—9.12E-02
2.24E-05
5.06E-03
3.03E-06
5.98E-04
3.83E-04
—2.18E-04
243E-05
3.56E-06
—1.28E-04
2.08E-05
2.23E-04
743E-05
3.11E-06

F-InBA
F-rDiffDq
W-MaT
W-TaP
W-aTR
W-MweqT
C-TaP
C-ISO
C-MaDR
C-seaPET
C-Ari
C-MwamT
C-MweqT
S-BLD
S-BDRICM

Other

F-BA
F-InBA
F-rDiffDqg
W-MaT
W-TaR
W-aTR
W-MINmMPET
W-MweqT
W-MwegR
C-TaPET
C-seaP
C-MweqT
S-SLTPPT
S-CEC
S-PHIHOX
S-ORCDRC
S-CRFVOL
D-DepOxN
D-DepOxS

Picea abies
6/,'\

— 1.80E+00
—5.07E-02
5.90E-03
6.34E-04
1.87E-06
3.06E-04
8.21E-04
3.30E-05
1.52E-03
—7.93E-04
—591E-06
—143E-06
6.73E-04
—5.30E-05
6.77E-05
9.98E-05

0
2.94E-01
7.70E-03
—9.13E-04
—5.79E-05
—6.67E-08
—6.98E-05
—1.26E-04
—5.56E-06
— 1.58E-04
9.44E-05
1.50E-06
2.26E-07
—1.10E-04
7.78E-06
—1.06E-05
—1.25E-05

indigenous pines

Oi1
5.36E-01
-9.62E-04
—2.10E-02
—5.77E-03
6.00E-03
3.82E-06
—3.38E-03
—1.76E-03
—4.60E-03
—4.05E-06
4.84E-05
—8.93E-04
—3.15E-04
—5.94E-04
1.40E-03
—449E-03
—7.32E-04
-8.61E-04
5.93E-05
—1.20E-05

02
—842E-02
1.60E-04
3.05E-03
1.17E-03
—8.98E-04
—1.02E-06
5.52E-04
2.60E-04
7.38E-04
—8.03E-07
—6.69E-06
1.62E-04
5.12E-05
1.32E-04
—2.57E-04
7.25E-04
1.23E-04
1.34E-04
—9.84E-06
2.21E-06

F-BA
F-InBA
F-rDiffDg
W-aTR
W-MwegR
C-TwagP

F-BA
F-InBA
F-rDiffDg
W-MaT
W-TaP
W-aTR
W-ARIi
W-SDmP
W-MINmP
W-McogP
C-TaAET
C-MaDR
C-seaP
C-seaPET
C-ThARI
C-MwamT
C-MweqT
C-TwagP
S-CLYPPT
S-CEC
S-PHIHOX
S-ORCDRC

Picea sitchensis

O
5.13E-01
—1.79E-03
—3.90E-02
6.23E-02
—1.10E-02
2.21E-04
—5.48E-04

Pinus sylvestris

O
245E+00
—1.34E-04
—4.77E-02
1.62E-02
-1.21E-03
—1.44E-05
—3.17E-04
—1.32E-03
443E-04
—5.34E-04
7.19E-05
1.57E-04
—5.63E-04
—3.60E-04
2.81E-05
1.61E-03
—8.09E-04
7.75E-05
2.14E-05
1.18E-03
—7.36E-04
—1.88E-03
3.11E-05

02
—7.59E-02
2.88E-04
5.65E-03
—9.29E-03
1.67E-03
—3.50E-05
8.90E-05

6;
—3.76E-01
1.75E-05
7.73E-03
—2.39E-03
2.18E-04
2.94E-06
4.57E-06
—3.32E-04
—6.87E-05
8.22E-05
—8.80E-06
—247E-05
6.90E-05
6.77E-05
—3.97E-06
—2.61E-04
1.25E-04
—1.22E-05
—5.36E-06
—2.04E-04
1.25E-04
2.98E-04
—1.09E-05
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Table 3 Selected variables and parameter estimates per species group. For abbreviations of variables see Appendix 2 (Continued)

X23
X24
X25

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X1
X12
X13
X14
X15
X16
X17
X18

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X1
X12
X13
X14
X15
X16
X17
X18
X19

F-BA
F-rDiffDq
W-MaT
W-TaR
W-MaDR
W-ThHUi
W-SDmR
W-MweqT
W-MwegR
C-MaDR
C-seaP
C-MweqT
D-DepOxN

Castanea sativa

F-BA

F-InBA
F-rDiffDqg
W-ISO
W-MINmP
C-MwamT
C-TcogP
S-BLD
S-CRFVOL
D-DepRedN

Other conifers
01
4.28E-01
—3.18E-03
1.85E-02
—3.23E-03
—2.88E-05
7.36E-03
1.21E-04
—1.82E-03
8.80E-03
—244E-04
8.02E-04
2.54E-03
—3.90E-04
1.54E-04

6
9.71E-01
7.11E-04
—6.26E-02
—1.09E-02
—7.33E-02
5.37E-04
—261E-04
1.04E-04
3.53E-05
—6.68E-04
2.63E-05

6
—6.48E-02
4.79E-04
—2.77E-03
1.03E-03
2.75E-06
—1.12E-03
—1.29E-05
3.01E-04
—-1.67E-03
453E-05
—1.36E-04
—3.87E-04
5.05E-05
—2.29E-05

6
—1.12E-01
—1.11E-04
943E-03
1.50E-03
1.14E-02
—9.91E-05
2.78E-05
—1.45E-05
—5.17E-06
9.19E-05
—3.67E-06

F-BA
F-InBA
F-rDiffDq
W-MaT
W-aTR
W-MaDR
W-ARIi
W-SDmPET
W-SDmR
C-seaP
C-ThARIi
C-TmmOP
C-TwagP
S-SLTPPT
S-BLD

F-BA
F-InBA
F-rDiffDq
W-MaT
W-TaP
W-TaR
CTi
S-SLTPPT

Betula spp.
0,1
—2.87E-01
—1.09E-03
—1.04E-02
5.70E-03
2.28E-03
2.75E-03
1.65E-03
—5.58E-03
—6.57E-04
2.19E-04
—6.96E-04
2.16E-03
8.94E-05
2.64E-04
3.34E-04
1.08E-04

Eucalyptus spp.
61
—7.62E-01
-1.67E-03
—3.55E-02
—1.23E-02
1.53E-02
5.78E-05
—7.71E-05
1.26E-04
—343E-04

6
487E-02
2.00E-04
942E-04
—6.83E-04
—3.14E-04
—4.86E-04
—2.93E-04
7.71E-04
8.35E-05
—2.80E-05
1.18E-04
—3.50E-04
—1.52E-05
—3.95E-05
—5.11E-05
—1.75E-05

6
4.22E-02
246E-04
521E-03
8.33E-04
—2.88E-03
—9.31E-06
1.18E-05
—9.33E-06
1.38E-04

Broadleaves longlived

F-InBA
W-MaT
W-TaR
W-aTR
W-ISO
C-aTR
C-seaPET
C-MweqT
S-CLYPPT
S-SLTPPT
S-CEC
S-CRFVOL
S-BDRICM
D-DepRedN

F-BA

F-InBA
W-TaR
W-ISO
W-MaDR
W-ThHUi
W-ThARi
W-SDmPET
W-MweqT
W-MdrgT
C-MaT
C-ISO
C-MINwamT
S-CLYPPT
S-SLTPPT
S-BLD
S-BDRICM
D-DepRedN
D-DepOxS

O
2.71E-01
—2.66E-02
2.07E-03
—1.67E-05
—4.52E-03
—6.38E-02
3.11E-04
—9.14E-06
—7.00E-05
—131E-03
9.24E-04
—6.14E-04
—7.39E-04
446E-05
1.79E-05

Fagus sylvatica
i
—4.53E-01
6.27E-04
—5.56E-02
—1.10E-05
—1.23E-01
4.24E-03
6.90E-06
2.69E-04
—4.54E-04
9.60E-04
—3.73E-04
—2.74E-05
1.82E-03
2.56E-04
—6.78E-04
—5.87E-04
347E-05
6.87E-05
5.09E-06
—3.39E-06

6
—4.01E-02
4.05E-03
—2.77E-04
241E-06
6.69E-04
8.32E-03
—5.04E-05
1.63E-06
1.12E-05
2.04E-04
—1.37E-04
9.11E-05
1.16E-04
—6.12E-06
—2.57E-06

6
485E-02
—9.59E-05
8.38E-03
1.70E-06
1.78E-02
—5.96E-04
8.34E-08
—4.46E-05
5.58E-05
—140E-04
5.33E-05
1.04E-05
—2.89E-04
—3.76E-05
1.05E-04
9.68E-05
—5.01E-06
—9.11E-06
—7.16E-07
497E-07

S-BDRICM

0.000117916

D-DepRedN  831E-07
D-DepOxN  7.32E-06

—1.93E-05
—5.66E-08
—1.28E-06

Broadleaves shortlived

F-InBA
W-aTR

i
1.13E-01
—3.18E-02
3.23E-03

W-SDmPET ~ —1.93E-03

W-SDmR
C-TaP
C-TaAET
C-ARi
C-MaDR
C-seaP
C-seaPET
C-ThARI
S-CEC
S-PHIHOX
S-BLD
S-CRFVOL
S-BDRICM

2.28E-04
9.83E-05
—2.38E-05
—5.32E-06
1.83E-04
—5.17E-04
—1.17E-05
5.40E-04
-9.07E-04
—1.59E-04
2.72E-05
—3.40E-04
1.87E-04

D-DepRedN  821E-06
D-DepOxN  —2.70E-05

F-InBA
W-aTR

6
—2.10E-02
467E-03
—6.25E-04
3.08E-04
—3.25E-05
—1.79E-05
6.85E-06
9.86E-07
—4.53E-05
7.30E-05
2.87E-06
—844E-05
140E-04
5.27E-05
—441E-06
3.71E-05
—2.29E-05
—1.15E-06
4.28E-06

Populus plantations

61
5.08E-01
—6.96E-02
-9.81E-03

6;
—7.29E-02
1.03E-02
143E-03
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Table 3 Selected variables and parameter estimates per species group. For abbreviations of variables see Appendix 2 (Continued)

Quercus ilex

9/,1
C 1.72E-01
X1 F-InBA —8.96E-03
X2 F-rDiffDg —2.11E-02
X3 W-MaDR —2.12E-03
X4 W-MINmMPET —4.56E-04
X5 CISO —1.60E-03
X6  C-TaP —6.10E-06
X7 S-PHIHOX —-3.17E-04
X8  D-DepOxN  —1.33E-05
X9
X10
X11
X12
X13

0
—2.68E-02
1.30E-03
3.10E-03
351E-04
6.33E-05
2.72E-04
1.25E-06
4.18E-05
3.20E-06

Quercus robur + petraea

6/,1

2.05E-01
F-BA 1.05E-03
F-InBA —5.93E-02
F-rDiffDqg 1.01E-03
W-TaR —746E-06
W-MINmPET  1.18E-04
C-TaPET 544E-05
C-seaP 4.16E-04
C-MwamT —3.02E-05
S-CEC —833E-04
S-BLD 2.80E-05
S-CRFVOL —4.36E-04
S-BDRICM 234E-04
D-DepOxN  4.34E-06

6/,2

—3.61E-02

—1.58E-04
8.93E-03
—1.20E-05
8.98E-07
—8.25E-06

F-InBA
F-rDiffDq
C-MaT
S-comp

D-DepOxS

—8.34E-06
—6.10E-05
7.03E-06
1.17E-04
—4.04E-06

5.94E-05

—3.72E-05
—5.10E-07

Quercus suber

61 6>
1.09E+00  —1.88E-01
—139E-02  2.02E-03
—2.70E-02  3.89E-03
—361E-04  6.31E-05
7.19E-03 —1.11E-03
3.67E-06 —4.94E-07

Robinia pseudoacacia

O
2.24E-01
F-InBA —4.99E-02
W-SDmP 3.35E-04

02
—3.30E-02
751E-03
—4.12E-05

Table 4 First column: Number of variables selected per species group and R* for the full model. Following columns: Number of
variables selected per variable group in the final model, and the relative decrease in R”" if this variable group is omitted from the

model and fitted again

Total Forest structure Weather Climate Soil Deposition
N R** N R** relative N R** relative N R** relative N R** relative N R** relative
decrease decrease decrease decrease decrease

Abies spp. 19 029 2 32.3% 5 6.2% 7 33% 3 2.8% 2 0.7%
Larix spp. 1 0.28 2 60.7% 4 29.9% 2 2.0% 1 1.2% 2 3.3%
Picea abies 15 029 2 374% 4 0.6% 7 34% 2 0.9% 0 0.0%
Picea sitchensis 6 032 3 46.4% 2 13.0% 1 22% 0 0.0% 0 0.0%
Pseudotsuga menziesii 5 0.37 2 65.7% 0 0.0% 2 1.2% 1 0.2% 0 0.0%
Pinus nigra + mugo 13 033 2 283% 5 15.9% 3 3.7% 2 1.4% 1 0.3%
Other indigenous pines 19 0.26 3 32.2% 6 12.5% 3 3.5% 5 6.2% 2 1.1%
Pinus sylvestris 25 0.17 3 73.3% 7 3.7% 8 13.8% 5 4.0% 2 0.1%
Other conifers 13 053 2 16.5% 7 122% 3 3.9% 0 0.0% 1 3.0%
Betula spp. 15 027 3 27.1% 6 1.9% 4 2.8% 2 2.0% 0 0.0%
Broadleaves longlived 14 0.2 1 28.0% 4 13.1% 3 1.3% 5 4.1% 1 2.8%
Broadleaves shortlived 18 0.25 1 25.1% 3 1.7% 7 5.8% 5 3.3% 2 0.5%
Castanea sativa 10 0.13 3 76.5% 2 5.2% 2 16.1% 2 5.1% 1 6.7%
Eucalyptus spp. 8 0.51 3 17.4% 3 23.5% 1 1.2% 1 0.9% 0 0.0%
Fagus sylvatica 19 0.25 2 27.9% 8 6.0% 3 3.1% 4 2.4% 2 0.3%
Populus plantations 2 0.2 1 73.5% 1 14.3% 0 0.0% 0 0.0% 0 0.0%
Quercus ilex 8 0.1 2 47.4% 2 8.0% 2 3.6% 1 1.3% 1 6.3%
Quercus robur + petraea 13 0.17 3 51.2% 2 1.8% 3 2.6% 4 54% 1 0.4%
Quercus suber 5 0.1 2 42.5% 0 0.0% 1 2.7% 1 2.5% 1 1.6%
Robinia pseudoacacia 2 0.21 1 68.6% 1 4.9% 0 0.0% 0 0.0% 0 0.0%
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for specific 3-month periods (quarters), related to precipita-
tion and potential evapotranspiration (PET). For the cli-
mate variables no clear pattern could be distinguished, but
also here annual variables were more often selected than in-
dices and values for specific quarters.

To get an impression of the spatial variability in pre-
dicted diameter increment, we calculated the growth of
a tree for all locations where a tree of that species was
present in our dataset. We assumed the tree had a diam-
eter equal to the average diameter of the species in the
full dataset (Table 2), an F-rDiffDq of O (i.e. the social
position of the tree was neutral) and that it was growing
in a stand with a basal area equal to the average basal
area listed in Table 2. We used the weather conditions
of the period 2000-2014. Species groups show distin-
ctively different spatial growth patterns (Fig. 3;
Additional file 2). Some species, like Fagus sylvatica and
Abies spp., have slow growth at their southern distribu-
tion limit and show good growth towards their northern
limit, while other species like Picea abies show the
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opposite pattern. Many species (Picea abies, P. sitchensis,
Populus plantations) show an east-west gradient with
better growth along the coast and less growth going east,
but Pseudotsuga menziesii and Quercus robur + petraea
show the opposite tendency. Only few groups (Pinus syl-
vestris, Betula spp.) show an optimum in their mid-range
and decreased growth towards their distribution limits.

To illustrate the sensitivity of the final models we
show the predicted diameter increment for a range of
conditions (Fig. 4; Additional file 3). The main curve
depicts the median diameter increment as predicted
for all sites assuming the median F-BA and a neutral
social position (F-rDiffDq=0). Ranges depict devia-
tions from this median growth for 5th and 95th per-
centile of increment predicted for all locations, 5th
and 95th percentile of F-BA observed in all locations
and 5th and 95th percentile of F-rDiffDq observed in
all locations. Additional file 4 shows the distribution
of the underlying data and the moving average curves
of both data and predictions.
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Fig. 3 Predicted diameter increment (mm/yr) of Fagus sylvatica and Picea abies at all sites where it is present, assuming average diameter and
basal area (Table 2) and a neutral social position (F-rDiffDq = 0), with weather conditions for the period 2000-2014. Please note that the scale is
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&1 — Diameter Increment = Median | F-BA = Median | F-rDiffDq = 0
---- Diameter Increment = Median | F-BA = 5% - 95% | F-rDiffDq = 0
Diameter Increment = Median | F-BA = Median | F-rDiffDq = 5% - 95%
Diameter Increment = 5% - 95% | F-BA = Median | F-rDiffDq = 0

10

Diameter increment (mm-yr-)
6

Picea abies

100 200 300

Diameter (mm)

Fig. 4 Sensitivity of predicted diameter increment in relation to diameter for Picea abies for a range of site and stand conditions. The maximum
value at the x-axis corresponds to the 99th percentile of diameter observed per species (Table 2)

400 500 600

Discussion

Growth of trees is governed by physical processes, plant
physiological processes and ecological processes (Muys
et al. 2010; Sterck et al. 2010). We have established a
general description of the predicted diameter increment
of European tree species as a function of the diameter
and the biotic and abiotic environment of the tree.
Even with the rather crude estimates of weather, climate,
soil and nutrient deposition that were used, the strict
shape of the growth curve, and the exclusion of the
known good predictors age, latitude and altitude, we were
able to explain between 10% and 53% of the variation in
diameter growth of individual trees of the main European
tree species and species groups. This level of explained
variation is in line with the values reported by other
studies based on country-scale forest inventory data-
sets (e.g. Andreassen and Tomter 2003; Laubhann et al.
2009; Cienciala et al. 2016; Charru et al. 2017). Much of
the unexplained variance seems to be attributable to
within-stand variation, given the high R*" value for total
basal area increment at the plot level given in the
results section. Further application of the models
should give insight in the predictive value at larger scales.
Other studies (e.g. Laubhann et al. 2009) already applied
regression models on individual-tree measurements for
multiple European countries, but these studies were aimed
at estimating effect sizes, rather than for predictive pur-
poses. To our knowledge our study is the first to present
tree diameter increment models with a European-wide
validity.

Apart from the regular measurement errors within an
NFI (McRoberts et al. 1994), our dataset may contain
extra variability by mixing different NFIs with different
designs, measurement methods, protocols and thresh-
olds (Table 1). On first screening of the data, we could

not find indications for systematic differences between
data from different NFIs, probably because we used the
original diameter measurements without any further
processing or interpretation. Additional noise is caused
by the inclusion of explanatory variables of varying
resolution (1-25 km), making it impossible to detect
small-scale variation as present for example in moun-
tainous terrain. However, the presented models are de-
signed to be applied on a broad scale for large sets of
plots, which will result in averaging out such errors. For
studies on smaller scales, local or national diameter
increment models might be better suited.

The largest part of the explained variance in the final
models is attributed to parameters related to the forest
structure, where basal area of the stand seems to be
more important than the relative size of the tree (Fig. 4;
Additional file 3). This is in line with many other studies
that found stand density (Cienciala et al. 2016) or basal
area (Hokka et al. 1997) to be important variables. Des-
pite the relatively low contribution of other variable
groups to the explained variance, they are important to
explain spatial patterns of diameter increment over
Europe (Fig. 3; Additional file 2). The spatial patterns of
diameter increment as presented in Additional file 2
seem plausible. Picea abies and Picea sitchensis are
known to grow well under wet conditions and moderate
temperatures. At higher latitudes and altitudes, growth
of Picea abies is limited by a short growing season and
low average temperatures, as indicated by declining
diameter increment. For Picea abies a similar gradual
decline is not visible on the southern edge. This is prob-
ably because trees are killed by attacks of bark beetles
after drought or heat waves (Seidl et al. 2007). The
opposite pattern is found in Fagus sylvatica. At the
southern edge, increment slows down as temperatures
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rise, while there is an abrupt halt at the northern edge.
This may be caused by mortality due to cold winters,
or because Fagus is still expanding its range north-
wards (Kramer et al. 2010). Pinus sylvestris is known
for its wide ability to survive in a wide range of en-
vironmental conditions. This is reflected in the spatial
growth pattern with a large distribution over Europe,
a moderate to good growth over a large range and
declining growth only in harsh environments, such as
dry inland Spain and under boreal conditions. Application
of the models under climate change scenarios should give
more information on the sensitivity of these patterns to
climate change.

The diameter increment models presented allow for
more detailed and consistent modelling of tree-
growth at the European scale. With these models
such modelling can take into account differences and
changes in weather, climate and soil conditions across
the continent and over time. As shown in Additional
file 3, the models give realistic predictions over a
large range of conditions. We recommend to use the
models not further than the 99th percentile of diam-
eter, as indicated in Table 2. Beyond these values the
data support is very sparse, and the models may give
unreasonable results. Similarly, the user should be
aware that the models may predict small negative
diameter increments for some species for specific combi-
nations of poor locations, small diameters and high basal
areas. The development of diameter increment models is
a first step towards a full simulation model of forest devel-
opment at the European scale. Such a growth model
should include a way to estimate individual-tree volume
from diameter, either directly (Zianis et al. 2005), via
height/diameter ratio models (Mehtitalo 2005), or by
inclusion of a height growth model (Ritchie and Hann
1986; Hasenauer and Monserud 1997), preferably climate-
dependent. Furthermore, modules are needed to cover
other important processes, like establishment of new
trees, mortality and forest management.

Conclusions

The presented diameter increment models are the first
of their kind that are applicable at the European scale.
They are based on a unique dataset that covers the
full range of growing conditions in Europe, and are
sensitive to forest structure and environmental condi-
tions, showing realistic patterns over their application
range. This is an important step towards the develop-
ment of a new generation of forest development simu-
lators that can be applied at the European scale, but
being sensitive to variations in growing conditions and
applicable to a wider range of management systems
than before.
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Appendix 1
Calculation of weather indices
Data were downloaded from the Agri4Cast website (http://
agridcastjrc.eceeuropa.eu/). It contains daily data for the
period 1975—current, at 25 km resolution. We extracted
monthly values for mean temperature, total precipitation,
total potential evapotranspiration and total radiation, for
the period 1990-2015. For all four variables we then com-
puted for each year the annual total (or mean in the case of
temperature), the standard deviation and the maximum
and the minimum. For every year, the warmest, the coldest,
the wettest and the driest quarter of the year was identified.
A quarter was defined as a successive period of 3 months,
where the value for the months January—March was
assigned to January, February—April to February, etc. For
the quarters starting in November and December, the
months of the next year were used. For every warmest,
coldest, wettest and driest quarter, the mean monthly value
of all four variables was computed. The resulting explana-
tory variables where labelled according to their operator
(denoted by M for mean, SD for standard deviation, MAX
for maximum and MIN for minimum), their aggregation
period (a for annual, m for month, waq for warmest quar-
ter, coq for coldest quarter, weq for wettest quarter and drq
for driest quarter) and their variable (T for temperature, P
for precipitation, PET for potential evapotranspiration and
R for radiation), 32 in total.

In addition we calculated the following indices, all on
an annual basis:

— Mean diurnal range (labelled as MaDR) from
the difference between the monthly averages of the
daily maximum and the daily minimum temperature

— Annual temperature range (aTR) as the difference
between MAXmT and MINmT

— Isothermality (ISO) as the ratio between MaDR
and aTR

— Annual degree days with thresholds 0, 5 and 10
(labelled respectively as DDO, DD5 and DD10)

— Aridity index (ARi) as TaP/TaPET

— Thornthwaite 1948 humidity index (ThHUi), being
the accumulated precipitation surplus divided by
PET in those months

— Thornthwaite 1948 aridity index (ThARI), being the
accumulated precipitation deficit divided by PET in
those months

For every observation of individual tree growth, we calcu-
lated the average of each variable for the period of observa-
tion, including both full years when the tree was measured.
Please note that the order of calculation for some variables
may lead to different values as presented in the BIOCLIM
dataset. For computational efficiency we first aggregated to
annual values before averaging over the years.
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Appendix 2

Full list of potential explanatory variables and their scoring
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Table 5 List of potential explanatory variables included. When two variables are correlated, the one with the highest score is discarded

Type Source / time span / resolution  Variable name Explanation Unit Preference score

Forest structure  NFI / at first year of inventory F-BA basal area of the plot m2/ha
F-InBA Ln(F-BA) -
F-rDiffDqg proxy for tree social position -

Weather Agri4Cast / during observed W-MaT mean annual temperature °C IAAARN

growth period /25 km W-SDmT standard deviation of monthly °C 122,111
mean temperature
W-MAXmT maximum monthly temperature °C 123111
W-MINMT minimum monthly temperature °C 123,121
W-MaDR mean diurnal range °C 112,141
W-aTR annual temperature range °C 112,121
W-ISO isothermality index 112,131
W-DDO degree days above 0 degrees Celsius °C 111,51
W-DD5 degree days above 5 degrees Celsius °C 111,521
W-DD10 degree days above 10 degrees Celsius °C 111,531
W-TaP total annual precipitation mm 111,211
W-SDmP standard deviation of monthly mm 122,211
precipitation

W-MAXmP maximum monthly precipitation mm 123211
W-MINmP minimum monthly precipitation mm 123,221
W-TaPET total annual potential evapotranspiration mm 111411
W-SDmPET standard deviation of monthly PET mm 122,411
W-MAXmMPET maximum monthly PET mm 123411
W-MINMPET minimum monthly PET mm 123,421
W-TaR total annual radiation GJm™ 111,311
W-SDmR standard deviation of monthly radiation ~ GJ-m™? 122311
W-MAXmR maximum monthly radiation GJm™ 123,311
W-MINmMR minimum monthly radiation GJm™ 123,321
W-MwagT mean warmest quarter temperature °C 13111
W-McogT mean coldest quarter temperature °C 131,131
W-MweqT mean wettest quarter temperature °C 131,121
W-MdrgT mean driest quarter temperature °C 131,141
W-MwagP mean warmest quarter precipitation mm 131,21
W-McogP mean coldest quarter precipitation mm 131,231
W-MweqP mean wettest quarter precipitation mm 131,221
W-MdrgP mean driest quarter precipitation mm 131,241
W-MwagR mean warmest quarter radiation GJ}m™ 131,311
W-McogR mean coldest quarter radiation GJm™? 131,331
W-MwegR mean wettest quarter radiation GJm™ 131,321
W-MdrgR mean driest quarter radiation GJm™ 131,341
W-MwagPET mean warmest quarter PET mm 131411
W-McogPET mean coldest quarter PET mm 131,431
W-MweqPET mean wettest quarter PET mm 131,421
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Table 5 List of potential explanatory variables included. When two variables are correlated, the one with the highest score is discarded

(Continued)
Type Source / time span / resolution  Variable name Explanation Unit Preference score
W-MdrgPET mean driest quarter PET mm 131,441
W-ARI aridity index index 114,411
W-ThHUi thorntwaite 1948 humidity index index 114,421
W-ThARI thorntwaite 1948 aridity index index 114,431
Deposition EMEP / average D-DepOxN deposition of oxidised nitrogen mgN)ym=2 411411
1990-2010/ 50 km D-DepOxS deposition of oxidised sulphur mg(S)m™? 412411
D-DepRedN deposition of reduced nitrogen mg(N)-m’2 411,421
Soil SoilGrids / NA / 1 km S-BDRICM depth to bedrock (R horizon) up to cm 311411
maximum 240 cm
S-BLD bulk density of the fine earth fraction kgm™> 311,321
S-CEC cation exchange capacity cmolkg™ 311,211
S-CLYPPT clay content mass fraction % 311,111
S-CRFVOL coarse fragments (> 2 mm fraction) % 311,331
volumetric
S-ORCDRC soil organic carbon % 311,311
S-PHIHOX pH in H,OX 10 311,221
S-SLTPPT silt content mass fraction % 311,121
S-SNDPPT sand content mass fraction % 311,131
European Soil S-comp natural susceptibility to 6 categories 311,341
Data Centre soil compaction
GENS / average C-wemP (bio13) precipitation of wettest month mm 221,223
1950-2000 /1 km C-drmP (bio14) precipitation of driest month mm 221,243
C-MaT (var?) annual mean temperature K 211,112
C-MaDR (var2) mean diurnal range K 212,142
C-ISO (var3) isothermality K 212,132
C-seaT (var4) temperature seasonality K 212,112
C-MAXwamT (var5)  maximum temperature of the K 223,113
warmest month
C-MINcomT (var6) minimum temperature of the K 223,133
coldest month
C-aTR (var7) annual temperature range K 212,123
C-MweqT (var8) mean temperature of wettest quarter K 231,123
C-MdrgT (var9) mean temperature of driest quarter K 231,143
C-MwaqT (var10) mean temperature of warmest quarter K 231,112
C-McoqT (var11) mean temperature of coldest quarter K 231,132
C-DDO (var12) degree days above 0 degrees Celsius °C 211,512
C-DD5 (var13) degree days above 5 degrees Celsius °C 211,522
C-McomT (var14) mean temperature of the K 221,132
coldest month
C-MwamT (var15) mean temperature of the K 221,112
warmest month
C-MAXcomT (var16)  maximum temperature of the K 223,112
coldest month
C-MINwamT (var17)  minimum temperature of the K 223,122
warmest month
C-NM10 (var18) number of months with mean 221,512

temperature > 10
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Table 5 List of potential explanatory variables included. When two variables are correlated, the one with the highest score is discarded

(Continued)

Type Source / time span / resolution  Variable name Explanation Unit Preference score
C-Ti (var19) thermicity index 214,112
C-TaP (var20) total annual precipitation mm 211,212
C-MwemP (var21) precipitation of the wettest month mm 221,222
C-MdrmP (var22) precipitation of the driest month mm 221,242
C-seaP (var23) precipitation seasonality mm 212,212
C-TweqgP (var24) precipitation of the wettest quarter mm 231,222
C-TdrgP (var25) precipitation of the driest quarter mm 231,242
C-TwagpP (var26) precipitation of the warmest quarter mm 231,212
C-TcogP (var27) precipitation of the coldest quarter mm 231,232
C-MINjjaP (var28) minimum June July August mm 233,221

precipitation
C-MAXjjaP (var29) maximum June July August mm 233211
precipitation
C-MINdjbP (var30) min Dec Jan Feb precipitation mm 233,222
C-MAXdjfP (var31) max Dec Jan Feb precipitation mm 233,212
C-TmmOP (var32) total precipitation for months with mm 211612
mean monthly temperature above 0
C-TaAET (var33) annual actual evapotranspiration mm 211,442
C-TaPET (var34) annual potential evapotranspiration mm 211,432
C-coefmoist (var35)  coefficient of annual moisture 214,442
availability
C-Ari (var36) aridity index 214412
C-seaPET (var3?7) PET seasonality 212412
C-ThHUi (var38) thorntwaite 1948 humidity index 214,422
C-ThARi (var39) thorntwaite 1948 aridity index 214,432
C-EmPQ (var40) embergers pluviothermic quotient 214452
C-TaR (var41) total annual radiation 211,312

Each explanatory variable X; was given a score on six different levels (S4X—-SgX). The final score S was calculated as:
SX;i = SaX; x 100000 + SgX; x 10000 + ScX; x 1000 + SpX; x 100 + SgX; x 10 + SgX;

where S; is the score at level A, relating to the variable group (weather, climate, soil, nutrient deposition), S, the score at level B, relating to the aggregation level
of weather-and climate related variables, etc. Scores per level are listed in Table 6 and final score per variable is included in Table 5

Table 6 Scores for elements of explanatory variables

Level

A

B
C
D

weather:1, climate:2 soil:3 deposition:4
annual:1, quarterly:2, monthly:3 all: all:
total:1, spread:2, extreme:3, index:4 all:a N:1, S22
temperature:1, precipitation:2, radiation:3, potential evapotranspiration:4,  texture:1, chemical:2, structural:3, depth:4 all:l
degree days:5, precipitation days:6
(ranges) (PET (degree day (extremes) (monthly/ (other (texture) (chemical) (structural) (depth)

indices) indices) quarterly)  cases)
seasonal:1, aridity:1, threshold = max:1, warmest:1, not clay:1,  CEC1, bulk density:1, depth to  reduced:1,
annual:2,  ThHUi:2, 0:1, threshold= min:2 wettest:2, defined:1 silt:2, pH:2 coarse fragments:2, bedrock:1 oxidised:2
1SO:3, ThARi:3, 5:2, threshold = coldest:3, sand:3 organic matter
daily:4 MA:4, 10:3 driest:4 content:3,

PQS5 soilcompaction:4
summer:1, winter:2, BIOCLIM dataset:3, GEnS dataset:4 all:1 all:1
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