75 research outputs found

    Pharmacogenetics of Nicotine Metabolism in Twins: Methods and Procedures

    Get PDF
    This article describes a pharmacogenetic investigation of nicotine metabolism in twins. One hundred and thirty-nine twin pairs (110 monozygotic and 29 dizygotic) were recruited and assessed for smoking status, zygosity, and health conditions known or suspected to affect drug metabolism. Participants underwent a 30-minute infusion of stable isotope-labeled nicotine and its major metabolite, cotinine, followed by an 8-hour in-hospital stay. Blood and urine samples were taken at regular intervals for analysis of nicotine, cotinine, and metabolites by gas chromatography-mass spectrometry or liquid chromatography-mass spectrometry and subsequent characterization of pharmacokinetic phenotypes. DNA was genotyped to confirm zygosity and for variation in the primary gene involved in nicotine metabolism, CYP2A6. Univariate and multivariate biometric analyses planned for the future will determine genetic and environmental influences on each pharmacokinetic measure individually and in combination with each other, and in the presence and absence of covariates, including measured genotype. When the analyses are completed, this study will result in a more complete characterization of the impact of genetic and environmental influences on nicotine and cotinine metabolic pathways than has heretofore been reported. The approach taken, with its use of a quantitative model of nicotine metabolism, highly refined metabolic phenotypes, measured genotype, and advanced tools for biometric genetic analysis, provides a model for the use of twins in next-generation studies of complex drug-metabolism phenotypes

    Lineage Abundance Estimation for SARS-CoV-2 in Wastewater Using Transcriptome Quantification Techniques

    Get PDF
    Effectively monitoring the spread of SARS-CoV-2 mutants is essential to efforts to counter the ongoing pandemic. Predicting lineage abundance from wastewater, however, is technically challenging. We show that by sequencing SARS-CoV-2 RNA in wastewater and applying algorithms initially used for transcriptome quantification, we can estimate lineage abundance in wastewater samples. We find high variability in signal among individual samples, but the overall trends match those observed from sequencing clinical samples. Thus, while clinical sequencing remains a more sensitive technique for population surveillance, wastewater sequencing can be used to monitor trends in mutant prevalence in situations where clinical sequencing is unavailable

    An Outbreak of Dengue Fever in St. Croix (US Virgin Islands), 2005

    Get PDF
    BACKGROUND: Periodic outbreaks of dengue fever occur in the United States Virgin Islands. In June 2005, an outbreak of dengue virus (DENV) serotype-2 with cases of dengue hemorrhagic fever (DHF) was detected in St. Croix, US Virgin Islands. The objective of this report is to describe this outbreak of DENV-2 and the findings of a case-control study examining risk factors for DHF. METHODOLOGY/PRINCIPAL FINDINGS: This is the largest dengue outbreak ever recorded in St. Croix, with 331 suspected dengue cases reported island-wide during 2005 (62.2 cases/10,000 population); 54% were hospitalized, 21% had at least one hemorrhagic manifestation, 28% had thrombocytopenia, 5% had DHF and 1 patient died. Eighty-nine laboratory-positive hospitalized patients were identified. Of these, there were 15 (17%) who met the WHO criteria for DHF (cases) and 74 (83%) who did not (controls). The only variable significantly associated with DHF on bivariate or multivariable analysis was age, with an adjusted odds ratio (95% confidence interval) of 1.033 (1.003,1.064). CONCLUSIONS/SIGNIFICANCE: During this outbreak of DENV-2, a high proportion of cases developed DHF and increasing age was significantly associated with DHF

    Correlates of Out-of-Pocket and Catastrophic Health Expenditures in Tanzania: Results from a National Household Survey.

    Get PDF
    Inequality in health services access and utilization are influenced by out-of-pocket health expenditures in many low and middle-income countries (LMICs). Various antecedents such as social factors, poor health and economic factors are proposed to direct the choice of health care service use and incurring out-of-pocket payments. We investigated the association of these factors with out-of-pocket health expenditures among the adult and older population in the United Republic of Tanzania. We also investigated the prevalence and associated determinants contributing to household catastrophic health expenditures. We accessed the data of a multistage stratified random sample of 7279 adult participants, aged between 18 and 59 years, as well as 1018 participants aged above 60 years, from the first round of the Tanzania National Panel survey. We employed multiple generalized linear and logistic regression models to evaluate the correlates of out-of-pocket as well as catastrophic health expenditures, accounting for the complex sample design effects. Increasing age, female gender, obesity and functional disability increased the adults' out-of-pocket health expenditures significantly, while functional disability and visits to traditional healers increased the out-of-pocket health expenditures in older participants. Adult participants, who lacked formal education or worked as manual laborers earned significantly less (p < 0.001) and spent less on health (p < 0.001), despite having higher levels of disability. Large household size, household head's occupation as a manual laborer, household member with chronic illness, domestic violence against women and traditional healer's visits were significantly associated with high catastrophic health expenditures. We observed that the prevalence of inequalities in socioeconomic factors played a significant role in determining the nature of both out-of-pocket and catastrophic health expenditures. We propose that investment in social welfare programs and strengthening the social security mechanisms could reduce the financial burden in United Republic of Tanzania

    Infection and Transmission of Rift Valley Fever Viruses Lacking the NSs and/or NSm Genes in Mosquitoes: Potential Role for NSm in Mosquito Infection

    Get PDF
    Rift Valley fever virus is transmitted mainly by mosquitoes and causes disease in humans and animals throughout Africa and the Arabian Peninsula. The impact of disease is large in terms of human illness and mortality, and economic impact on the livestock industry. For these reasons, and because there is a risk of this virus spreading to Europe and North America, it is important to develop a vaccine that is stable, safe and effective in preventing infection. Potential vaccine viruses have been developed through deletion of two genes (NSs and NSm) affecting virus virulence. Because this virus is normally transmitted by mosquitoes we must determine the effects of the deletions in these vaccine viruses on their ability to infect and be transmitted by mosquitoes. An optimal vaccine virus would not infect or be transmitted. The viruses were tested in two mosquito species: Aedes aegypti and Culex quinquefasciatus. Deletion of the NSm gene reduced infection of Ae. aegypti mosquitoes indicating a role for the NSm protein in mosquito infection. The virus with deletion of both NSs and NSm genes was the best vaccine candidate since it did not infect Ae. aegypti and showed reduced infection and transmission rates in Cx. quinquefasciatus

    An E2F1-Mediated DNA Damage Response Contributes to the Replication of Human Cytomegalovirus

    Get PDF
    DNA damage resulting from intrinsic or extrinsic sources activates DNA damage responses (DDRs) centered on protein kinase signaling cascades. The usual consequences of inducing DDRs include the activation of cell cycle checkpoints together with repair of the damaged DNA or induction of apoptosis. Many DNA viruses elicit host DDRs during infection and some viruses require the DDR for efficient replication. However, the mechanism by which DDRs are activated by viral infection is poorly understood. Human cytomegalovirus (HCMV) infection induces a DDR centered on the activation of ataxia telangiectasia mutated (ATM) protein kinase. Here we show that HCMV replication is compromised in cells with inactivated or depleted ATM and that ATM is essential for the host DDR early during infection. Likewise, a downstream target of ATM phosphorylation, H2AX, also contributes to viral replication. The ATM-dependent DDR is detected as discrete, nuclear γH2AX foci early in infection and can be activated by IE proteins. By 24 hpi, γH2AX is observed primarily in HCMV DNA replication compartments. We identified a role for the E2F1 transcription factor in mediating this DDR and viral replication. E2F1, but not E2F2 or E2F3, promotes the accumulation of γH2AX during HCMV infection or IE protein expression. Moreover, E2F1 expression, but not the expression of E2F2 or E2F3, is required for efficient HCMV replication. These results reveal a novel role for E2F1 in mediating an ATM-dependent DDR that contributes to viral replication. Given that E2F activity is often deregulated by infection with DNA viruses, these observations raise the possibility that an E2F1-mediated mechanism of DDR activation may be conserved among DNA viruses

    Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis

    Get PDF
    The combined application of next-generation sequencing platforms has provided an economical approach to unlocking the potential of the turkey genome

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    Background and aims: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress and novel therapeutic response in PC to develop a biomarker driven therapeutic strategy targeting DDR and replication stress in PC. Methods: We interrogated the transcriptome, genome, proteome and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient derived xenografts and human PC organoids. Results: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, co-segregates with response to platinum (P &lt; 0.001) and PARP inhibitor therapy (P &lt; 0.001) in vitro and in vivo. We generated a novel signature of replication stress with which predicts response to ATR (P &lt; 0.018) and WEE1 inhibitor (P &lt; 0.029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P &lt; 0.001) but not associated with DDR deficiency. Conclusions: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR proficient PC, and post-platinum therapy

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe
    corecore