17 research outputs found

    Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth

    Get PDF
    Understanding cell types and mechanisms of dental growth is essential for reconstruction and engineering of teeth. Therefore, we investigated cellular composition of growing and non-growing mouse and human teeth. As a result, we report an unappreciated cellular complexity of the continuously-growing mouse incisor, which suggests a coherent model of cell dynamics enabling unarrested growth. This model relies on spatially-restricted stem, progenitor and differentiated populations in the epithelial and mesenchymal compartments underlying the coordinated expansion of two major branches of pulpal cells and diverse epithelial subtypes. Further comparisons of human and mouse teeth yield both parallelisms and differences in tissue heterogeneity and highlight the specifics behind growing and non-growing modes. Despite being similar at a coarse level, mouse and human teeth reveal molecular differences and species-specific cell subtypes suggesting possible evolutionary divergence. Overall, here we provide an atlas of human and mouse teeth with a focus on growth and differentiation. Unlike human teeth, mouse incisors grow throughout life, based on stem and progenitor cell activity. Here the authors generate single cell RNA-seq comparative maps of continuously-growing mouse incisor, non-growing mouse molar and human teeth, combined with lineage tracing to reveal dental cell complexity.Peer reviewe

    Association between exposure to ambient air pollution, meteorological factors and atopic dermatitis consultations in Singapore—a stratified nationwide time-series analysis

    No full text
    Abstract Atopic dermatitis (AD) is a chronic inflammatory skin disease affecting approximately 20% of children globally. While studies have been conducted elsewhere, air pollution and weather variability is not well studied in the tropics. This time-series study examines the association between air pollution and meteorological factors with the incidence of outpatient visits for AD obtained from the National Skin Centre (NSC) in Singapore. The total number of 1,440,844 consultation visits from the NSC from 2009 to 2019 was analysed. Using the distributed lag non-linear model and assuming a negative binomial distribution, the short-term temporal association between outpatient visits for AD and air quality and meteorological variability on a weekly time-scale were examined, while adjusting for long-term trends, seasonality and autocorrelation. The analysis was also stratified by gender and age to assess potential effect modification. The risk of AD consultation visits was 14% lower (RR10th percentile: 0.86, 95% CI 0.78–0.96) at the 10th percentile (11.9 µg/m3) of PM2.5 and 10% higher (RR90th percentile: 1.10, 95% CI 1.01–1.19) at the 90th percentile (24.4 µg/m3) compared to the median value (16.1 µg/m3). Similar results were observed for PM10 with lower risk at the 10th percentile and higher risk at the 90th percentile (RR10th percentile: 0.86, 95% CI 0.78–0.95, RR90th percentile: 1.10, 95% CI 1.01–1.19). For rainfall for values above the median, the risk of consultation visits was higher up to 7.4 mm in the PM2.5 model (RR74th percentile: 1.07, 95% CI 1.00–1.14) and up to 9 mm in the PM10 model (RR80th percentile: 1.12, 95% CI 1.00–1.25). This study found a close association between outpatient visits for AD with ambient particulate matter concentrations and rainfall. Seasonal variations in particulate matter and rainfall may be used to alert healthcare providers on the anticipated rise in AD cases and to time preventive measures to reduce the associated health burden

    Ambient Air Quality and Emergency Hospital Admissions in Singapore: A Time-Series Analysis

    No full text
    Air pollution exposure may increase the demand for emergency healthcare services, particularly in South-East Asia, where the burden of air-pollution-related health impacts is high. This article aims to investigate the association between air quality and emergency hospital admissions in Singapore. Quasi-Poisson regression was applied with a distributed lag non-linear model (DLNM) to assess the short-term associations between air quality variations and all-cause, emergency admissions from a major hospital in Singapore, between 2009 and 2017. Higher concentrations of SO2, PM2.5, PM10, NO2, and CO were positively associated with an increased risk of (i) all-cause, (ii) cardiovascular-related, and (iii) respiratory-related emergency admissions over 7 days. O3 concentration increases were associated with a non-linear decrease in emergency admissions. Females experienced a higher risk of emergency admissions associated with PM2.5, PM10, and CO exposure, and a lower risk of admissions with NO2 exposure, compared to males. The older adults (≥65 years) experienced a higher risk of emergency admissions associated with SO2 and O3 exposure compared to the non-elderly group. We found significant positive associations between respiratory disease- and cardiovascular disease-related emergency hospital admissions and ambient SO2, PM2.5, PM10, NO2, and CO concentrations. Age and gender were identified as effect modifiers of all-cause admissions

    Self-Organized Architectures from Assorted DNA-Framed Nanoparticles

    No full text
    The science of self-assembly has undergone a radical shift from asking questions about why individual components self-organize into ordered structures, to manipulating the resultant order. However, the quest for far-reaching nanomanufacturing requires addressing an even more challenging question: how to form nanoparticle (NP) structures with designed architectures without explicitly prescribing particle positions. Here we report an assembly concept in which building instructions are embedded into NPs via DNA frames. The integration of NPs and DNA origami frames enables the fabrication of NPs with designed anisotropic and selective interactions. Using a pre-defined set of different DNA-framed NPs, we show it is possible to design diverse planar architectures, which include periodic structures and shaped meso-objects that spontaneously emerge on mixing of the different topological types of NP. Even objects of non-trivial shapes, such as a nanoscale model of Leonardo da Vinci\u27s Vitruvian Man, can be self-assembled successfully

    DNA architectonics: towards the next generation of bio-inspired materials

    No full text
    The use of DNA in nanobiotechnology has advanced to a stage at which almost any two or three dimensional architecture can be designed with high precision. The choice of the DNA sequences is essential for successful self-assembly, and opens new ways of making nanosized monomolecular assemblies with predictable structure and size. The inclusion of designer nucleoside analogues further adds functionality with addressable groups, which have an influence on the function of the DNA nano-objects. This article highlights the recent achievements in this emerging field and gives an outlook on future perspectives and application
    corecore