6 research outputs found

    Strengthening therapeutic adherence and pharmacovigilance to antimalarial treatment in Manaus, Brazil: a multicomponent strategy using mHealth

    Get PDF
    Background: Public health initiatives for improving adherence to primaquine based regimens and enhancing effective pharmacovigilance are needed to support the efforts for malaria elimination in real world conditions. Methods: A multicomponent patient-oriented strategy using a Smart Safety Surveillance (3S) approach including: (1) educational materials for treatment counselling and identification of warning symptoms of haemolytic anaemia; (2) an mHealth component using Short Message Service (SMS) treatment reminders and (3) development and implementation of follow-up phone surveys three days after treatment completion, using a web-based platform linked to the local information system of malaria. Adherence was measured using the Morisky Medication Adherence Scale. Self-reported events were registered using a structured questionnaire and communicated to the Brazilian Health Regulatory Agency. Results: Educational materials were disseminated to 5594 patients, of whom 1512 voluntarily entered the mHealth component through the local information system; 7323 SMS were sent, and 1062 participants completed a follow-up survey after treatment. The mean age of patients was 37.36 years (SD 13.65), 61.24% were male, 98.54% were infected with. Plasmodium vivax and 95.90% received a short regimen of chloroquine plus primaquine (CQ + PQ 7 days), as per malaria case management guidelines in Brazil. From the 1062 surveyed participants 93.31% were considered adherent to the treatment. Most of the patients (95.20%) reported at least one adverse event. Headache, lack of appetite and nausea/vomiting were the most frequently reported adverse events by 77.31%, 70.90% and 56.78% of the patients respectively. A quarter of the patients reported anxiety or depression symptoms; 57 (5.37%) patients reported 5 to 6 warning symptoms of haemolytic anaemia including jaundice and dark urine in 44 (4.14%). Overall, three patients presenting symptoms of haemolytic anaemia attended a hospital and were diagnosed with G6PD deficiency, and one had haemolysis. All of them recovered. Conclusions: Under real world conditions, a multicomponent patient-oriented strategy using information and communication technologies allowed health care providers to reinforce treatment adherence and enhance safety surveillance of adverse events associated with regimens using primaquine. Active monitoring through phone surveys also reduced under-reporting of ADRs. This approach is low-cost, scalable and able to support prioritized activities of the national malaria programme.Fil: Macías Saint Gerons, Diego. Universidad de Valencia; EspañaFil: Rodovalho, Sheila. Universidad Federal del Amazonas.; BrasilFil: Barros Dias, Ádila Liliane. Universidad Federal del Amazonas.; BrasilFil: Lacerda Ulysses de Carvalho, André. Pan American Health Organization; BrasilFil: Beratarrechea, Andrea Gabriela. Instituto de Efectividad Clínica y Sanitaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Monteiro, Wuelton Marcelo. Universidad Federal del Amazonas.; BrasilFil: Barata Machado, Myrna. State of Amazonas Health Surveillance Foundation; BrasilFil: Fernandes da Costa, Cristiano. State of Amazonas Health Surveillance Foundation; BrasilFil: Yoshito Wada, Marcelo. No especifíca;Fil: Maximiano Faria de Almeida, Márcia Helena. No especifíca;Fil: Silva de Matos Fonseca, Rayanne. Fundação de Medicina Tropical Dr. Heitor Vieira Dourado; BrasilFil: Mota Cordeiro, Jady Shayenne. Fundação de Medicina Tropical Dr. Heitor Vieira Dourado; BrasilFil: Rodrigues Antolini, Alinne Paula. No especifíca;Fil: Nepomuceno, João Altecir. No especifíca;Fil: Fleck, Karen. Brazilian Health Regulatory Agency; BrasilFil: Simioni Gasparotto, Fernanda. Brazilian Health Regulatory Agency; BrasilFil: Lacerda, Marcus. Fundação de Medicina Tropical Dr. Heitor Vieira Dourado; BrasilFil: Rojas Cortés, Robin. Pan American Health Organization; Estados UnidosFil: Pal, Shanthi Narayan. No especifíca;Fil: Porrás, Analía I.. Pan American Health Organization; Estados UnidosFil: Ade, María de la Paz. Pan American Health Organization; Estados UnidosFil: Castro, José Luis. Pan American Health Organization; Estados Unido

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore