41 research outputs found

    Rápida mudança de transcritos var e de génotipos de Plasmodium falciparum em infecções assintomáticas naturalmente adquiridas

    Get PDF
    Os genes var de Plasmodium falciparum codificam as proteínas variantes da superfície do eritrócito infectado (PfEMP1). Neste estudo examinamos a mudança de transcritos destes genes var em duas infecções assintomáticas durante um curto prazo e estimamos simultaneamente o número de genomas circulantes nas mesmas amostras por análise de microssatélites. Nas duas infecções observamos uma rápida mudança de genótipos e transcritos de genes var. A mudança acelerada do repertório de transcritos possivelmente foi causada pela rápida eliminação de parasitas circulantes transcrevendo genes var a partir de genomas iguais ou diferentes, ou pela mudança acelerada da própria transcrição (switching) de genes var.The var genes of Plasmodium falciparum code for the antigenically variant erythrocyte membrane proteins 1 (PfEMP1), a major factor for cytoadherence and immune escape of the parasite. Herein, we analyzed the var gene transcript turnover in two ongoing, non-symptomatic infections at sequential time points during two weeks. The number of different circulating genomes was estimated by microsatellite analyses. In both infections, we observed a rapid turnover of plasmodial genotypes and var transcripts. The rapidly changing repertoire of var transcripts could have been caused either by swift elimination of circulating var-transcribing parasites stemming from different or identical genetic backgrounds, or by accelerated switching of var gene transcription itself

    The CD14+CD16+ inflammatory monocyte subset displays increased mitochondrial activity and effector function during acute Plasmodium vivax malaria

    Get PDF
    Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax-infected patients display significant increase in circulating monocytes, which were defined as CD14(+)CD16- (classical), CD14(+)CD16(+) (inflammatory), and CD14loCD16(+) (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16(+) cells, in particular the CD14(+)CD16(+) monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14(+) were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14(+)CD16(+) monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-alpha and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14(+)CD16(+) cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection

    Neutrophil Paralysis in Plasmodium vivax Malaria

    Get PDF
    Plasmodium vivax is responsible for approximately 60–80% of the malaria cases in the world, and contributes to significant social and economic instability in the developing countries of Latin America and Asia. The pathogenesis of P. vivax malaria is a consequence of host derived inflammatory mediators. Hence, a better understanding of the mechanisms involved in induction of systemic inflammation during P. vivax malaria is critical for the clinical management and prevention of severe disease. The innate immune receptors recognize Plasmodium sp. and initiate a broad spectrum of host defense mechanisms that mediate resistance to infection. However, the innate immune response is the classic “two-edged sword”, and clinical malaria is associated with high levels of circulating pro-inflammatory cytokines. Our findings show that both monocytes and neutrophils are highly activated during malaria. Monocytes produced high levels of IL-1β, IL-6 and TNF-α during acute malaria. On the other hand, neutrophils were a poor source of cytokines, but displayed an enhanced phagocytic activity and superoxide production. Unexpectedly, we noticed an impaired chemotaxis of neutrophils towards an IL-8 (CXCL8) gradient. We proposed that neutrophil paralysis is in part responsible for the enhanced susceptibility to bacterial infection observed in malaria patients

    Understanding the clinical spectrum of complicated Plasmodium vivax malaria: a systematic review on the contributions of the Brazilian literature

    Get PDF
    The resurgence of the malaria eradication agenda and the increasing number of severe manifestation reports has contributed to a renewed interested in the Plasmodium vivax infection. It is the most geographically widespread parasite causing human malaria, with around 2.85 billion people living under risk of infection. The Brazilian Amazon region reports more than 50% of the malaria cases in Latin America and since 1990 there is a marked predominance of this species, responsible for 85% of cases in 2009. However, only a few complicated cases of P. vivax have been reported from this region. A systematic review of the Brazilian indexed and non-indexed literature on complicated cases of vivax malaria was performed including published articles, masters' dissertations, doctoral theses and national congresses' abstracts. The following information was retrieved: patient characteristics (demographic, presence of co-morbidities and, whenever possible, associated genetic disorders); description of each major clinical manifestation. As a result, 27 articles, 28 abstracts from scientific events' annals and 13 theses/dissertations were found, only after 1987. Most of the reported information was described in small case series and case reports of patients from all the Amazonian states, and also in travellers from Brazilian non-endemic areas. The more relevant clinical complications were anaemia, thrombocytopaenia, jaundice and acute respiratory distress syndrome, present in all age groups, in addition to other more rare clinical pictures. Complications in pregnant women were also reported. Acute and chronic co-morbidities were frequent, however death was occasional. Clinical atypical cases of malaria are more frequent than published in the indexed literature, probably due to a publication bias. In the Brazilian Amazon (considered to be a low to moderate intensity area of transmission), clinical data are in accordance with the recent findings of severity described in diverse P. vivax endemic areas (especially anaemia in Southeast Asia), however in this region both children and adults are affected. Finally, gaps of knowledge and areas for future research are opportunely pointed out

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Infection of Anopheles darlingi fed on patients infected with Plasmodium vivax before and during treatment with chloroquine plus primaquine in Costa Marques, Rondônia, Brazil

    No full text
    Five patients with asexual and sexual parasites of Plasmodium vivax were treated orally with 600 mg chloroquine diphosphate (hour 0) followed with 300 mg at 8, 24 and 48 h later. Primaquine phospate, 15 mg, was administered concurrently at h 0 and 24 h intervals for 14 days. Anopheles darlingi were fed before the first dose (h-0.5) and 0.5, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 36, 48, 60 and 72 h later. Mosquitoes were examined for oocysts on day 8 and for sporozoites on day 15 after infection. Four of the five patients studied were still infective to mosquitoes from 1-5 h after the first dose of chloroquine plus primaquine. One of these and one other patient, who vomited 15 min after the first dose, became inffective again at hours 10 and 12, respectively. Once produced, oocysts in mosquitoes fed on patients before, during and after chloroquine plus primaquine treatment appeared normal and produced sporozoite infected salivary glands. In view of these data , it is concluded that primaquine demonstrated rapid gametocytocidal activity and should be administred concurrently with chloroquine to reduce vivax malaria transmission
    corecore