38 research outputs found

    Serotonin and Noradrenaline Reuptake Inhibitors Improve Micturition Control in Mice

    Get PDF
    Poor micturition control may cause profound distress, because proper voiding is mandatory for an active social life. Micturition results from the subtle interplay of central and peripheral components. It involves the coordination of autonomic and neuromuscular activity at the brainstem level, under the executive control of the prefrontal cortex. We tested the hypothe- sis that administration of molecules acting as reuptake inhibitors of serotonin, noradrenaline or both may exert a strong effect on the control of urine release, in a mouse model of overac- tive bladder. Mice were injected with cyclophosphamide (40 mg/kg), to increase micturition acts. Mice were then given one of four molecules: the serotonin reuptake inhibitor imipra- mine, its metabolite desipramine that acts on noradrenaline reuptake, the serotonin and nor- adrenaline reuptake inhibitor duloxetine or its active metabolite 4-hydroxy-duloxetine. Cyclophosphamide increased urine release without inducing overt toxicity or inflammation, except for increase in urothelium thickness. All the antidepressants were able to decrease the cyclophosphamide effects, as apparent from longer latency to the first micturition act, decreased number of urine spots and volume of released urine. These results suggest that serotonin and noradrenaline reuptake inhibitors exert a strong and effective modulatory ef- fect on the control of urine release and prompt to additional studies on their central effects on brain areas involved in the social and behavioral control of micturition

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Role of bronchial and bronchoalveolar lavage in chronic obstructive lung disease.

    No full text
    The authors review the role of bronchoalveolar and bronchial lavage in chronic obstructive lung disease patients. Only a few papers were published in the last ten years on this matter. In addition, data are incomplete and often conflicting, mainly because of the limited number of patients sampled and of non-standardized techniques of analysis. However, both bronchoalveolar and bronchial lavage are likely to be useful research tools to understand the pathophysiologic mechanisms underlying chronic obstructive lung disease

    Characterization of a human and murine gene (CLCN3) sharing similarities to voltage-gated chloride channels and to a yeast integral membrane protein.

    No full text

    Human FIGF: cloning, gene structure, and mapping to chromosome Xp22.1 between the PIGA and the GRPR genes

    No full text
    We report the identification, structural characterization, and mapping of the human FIGF gene. FIGF is the human homologue of mouse figf (c-fos-induced growth factor), a new member of the platelet-derived growth factor/vascular endothelial growth factor (PDGF/VEGF) family. It codes for a secreted factor with mitogenic and morphogenic activity on fibroblast cells. The predicted amino acid sequence of FIGF is 84% identical to that of the mouse protein, and it is highly conserved (up to 40%) in the dimerization domain with respect to the VEGF members of the family. The 2.5-kb mRNA of FIGF was detected in adult lung and heart tissues. The gene spans about 50 kb and is organized into seven exons and six introns. The FIGF promoter contains an optimal AP-1-binding site and lacks a canonical TATA box. Fluorescence in situ hybridization mapped FIGF to chromosomal region Xp22.1. The subsequent identification of YAC positive clones from this region allowed us to refine the map and localize FIGF centromeric to the phosphatidylinositol glycan complementation class A (PIGA) gene and telomeric to the gastrin-releasing peptide receptor (GRPR) gene. FIGF and PIGA genes lie next to each other in a head-to-tail orientation, with the FIGF polyadenylation signal about 12 kb from the PIGA transcriptional start site

    DIVERSE PREVALENCE OF LARGE DELETIONS WITHIN THE OA1 GENE IN OCULAR ALBINISM TYPE 1 PATIENTS FROM EUROPE AND NORTH AMERICA

    No full text
    Ocular albinism type 1 (OA1) is an X-linked disorder mainly characterized by congenital nystagmus and photodysphoria, moderate to severe reduction of visual acuity, hypopigmentation of the retina, and the presence of macromelanosomes in the skin and eyes. We have previously isolated the gene for OA1 and characterized its protein product as melanosomal membrane glycoprotein displaying structural and functional features of G protein-coupled receptors. We and others have identified mutations of various types within the OA1 gene in patients with this disorder, including deletions and splice site, frameshift, nonsense, and missense mutations. However, different prevalences of large intragenic deletions have been reported, ranging from 10% to 50% in independent studies. To determine whether these differences might be related to the geographic origin of the OA1 families tested, we performed a further extensive mutation analysis study leading to the identification of pathogenic mutations in 30 unrelated OA1 patients mainly from Europe and North America. These results, together with our earlier mutation reports on OA1, allow us to resolve the apparent discrepancies between previous studies and point to a substantial difference in the frequency of large intragenic deletions in European (50%) OA1 families. These observations and our overall refinement of point mutation distribution within the OA1 gene have important implications for the molecular diagnosis of OA1 and for the establishment of any mutation detection program for this disorder

    EFFECTIVE RETROVIRUS-MEDIATED GENE TRANSFER IN NORMAL AND MUTANT HUMAN MELANOCYTES

    No full text
    Melanocytes represent the second most important cell type in the skin and are primarily responsible for the pigmentation of skin, hair, and eyes. Their function may be affected in a number of inherited and acquired disorders, characterized by hyperpigmentation or hypopigmentation, consequent aesthetic problems, and increased susceptibility to sun-mediated skin damage and photocarcinogenesis. Nevertheless, the possibility of genetically manipulating human melanocytes has been hampered so far by a number of limitations, including their resistance to retroviral infection. To address the problem of human melanocyte transduction, we generated a melanocyte culture from a patient affected with ocular albinism type 1 (OA1), an X-linked pigmentation disorder, characterized by severe reduction of visual acuity, retinal hypopigmentation, and the presence of macromelanosomes in skin melanocytes and retinal pigment epithelium (RPE). The cultured patient melanocytes displayed a significant impairment in replication ability and showed complete absence of endogenous OA1 protein, thus representing a suitable model for setting up an efficient gene transfer procedure. To correct the genetic defect in these cells, we used a retroviral vector carrying the OA1 cDNA and exploited a melanocyte-keratinocyte coculturing approach. Despite their lower replication rate with respect to wildtype cells, the patient melanocytes were efficiently transduced and readily selected in vitro, and were found to express, process, and properly sort large amounts of recombinant OA1 protein. These results indicate the feasibility of efficiently and stably transducing in vitro not only normal neonatal, but also mutant adult, human melanocytes with nonmitogenic genes
    corecore