78 research outputs found

    Glycerol-3-Phosphate Acyltransferase 1 Deficiency in ob/ob Mice Diminishes Hepatic Steatosis but Does Not Protect Against Insulin Resistance or Obesity

    Get PDF
    OBJECTIVEHepatic steatosis is strongly associated with insulin resistance, but a causal role has not been established. In ob/ob mice, sterol regulatory element binding protein 1 (SREBP1) mediates the induction of steatosis by upregulating target genes, including glycerol-3-phosphate acyltransferase-1 (Gpat1), which catalyzes the first and committed step in the pathway of glycerolipid synthesis. We asked whether ob/ob mice lacking Gpat1 would have reduced hepatic steatosis and improved insulin sensitivity.RESEARCH DESIGN AND METHODSHepatic lipids, insulin sensitivity, and hepatic insulin signaling were compared in lean (Lep+/?), lean-Gpat1−/−, ob/ob (Lepob/ob), and ob/ob-Gpat1−/− mice.RESULTSCompared with ob/ob mice, the lack of Gpat1 in ob/ob mice reduced hepatic triacylglycerol (TAG) and diacylglycerol (DAG) content 59 and 74%, respectively, but increased acyl-CoA levels. Despite the reduction in hepatic lipids, fasting glucose and insulin concentrations did not improve, and insulin tolerance remained impaired. In both ob/ob and ob/ob-Gpat1−/− mice, insulin resistance was accompanied by elevated hepatic protein kinase C-ε activation and blunted insulin-stimulated Akt activation.CONCLUSIONSThese results suggest that decreasing hepatic steatosis alone does not improve insulin resistance, and that factors other than increased hepatic DAG and TAG contribute to hepatic insulin resistance in this genetically obese model. They also show that the SREBP1-mediated induction of hepatic steatosis in ob/ob mice requires Gpat1

    Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To get insight into molecular mechanisms underlying insulin resistance, we compared acute in vivo effects of insulin on adipose tissue transcriptional profiles between obese insulin-resistant and lean insulin-sensitive women.</p> <p>Methods</p> <p>Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 hours of intravenously maintained euglycemic hyperinsulinemia from 9 insulin-resistant and 11 insulin-sensitive females. Gene expression was measured using Affymetrix HG U133 Plus 2 microarrays and qRT-PCR. Microarray data and pathway analyses were performed with Chipster v1.4.2 and by using in-house developed nonparametric pathway analysis software.</p> <p>Results</p> <p>The most prominent difference in gene expression of the insulin-resistant group during hyperinsulinemia was reduced transcription of nuclear genes involved in mitochondrial respiration (mitochondrial respiratory chain, GO:0001934). Inflammatory pathways with complement components (inflammatory response, GO:0006954) and cytokines (chemotaxis, GO:0042330) were strongly up-regulated in insulin-resistant as compared to insulin-sensitive subjects both before and during hyperinsulinemia. Furthermore, differences were observed in genes contributing to fatty acid, cholesterol and triglyceride metabolism (FATP2, ELOVL6, PNPLA3, SREBF1) and in genes involved in regulating lipolysis (ANGPTL4) between the insulin-resistant and -sensitive subjects especially during hyperinsulinemia.</p> <p>Conclusions</p> <p>The major finding of this study was lower expression of mitochondrial respiratory pathway and defective induction of lipid metabolism pathways by insulin in insulin-resistant subjects. Moreover, the study reveals several novel genes whose aberrant regulation is associated with the obese insulin-resistant phenotype.</p

    Comparison of ankle-brachial pressure index and pulse wave velocity as markers of cognitive function in a community-dwelling population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular factors have been implicated in the development of cognitive decline and dementia. The purpose of this study is to determine the association of the Ankle Brachial pressure Index (ABI) and brachial-ankle Pulse Wave Velocity (ba-PWV) to cognitive impairment in a community-dwelling population.</p> <p>Methods</p> <p>The ABI and ba-PWV were measured using the volume-plethymographic apparatus in 388 subjects aged 60 years old and over. The Mini-Mental State Examination was also employed to measure global cognitive status. The effectiveness of the ABI and ba-PWV as putative markers of cognitive impairment were determined by using a multiple logistic regression analysis after adjusting for confounding factors.</p> <p>Results</p> <p>Subjects with poor cognition were significantly older and less well educated than those with normal cognition. According to the multiple logistic regression analysis, the lowest ABI tertile was found to be a significant independent risk factor (OR = 3.19, 95% CI = 1.30 to 7.82) of the cognitive impairment, whereas the highest brachial-ankle PWV tertile was not.</p> <p>Conclusions</p> <p>A low ABI was an independent risk factor for cognitive impairment in community-dwelling older populations, whereas a high ba-PWV may not be. Further research will be required to analyze ABI and PWV with greater accuracy.</p

    Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings

    Get PDF

    The Lancet Psychiatry Commission : a blueprint for protecting physical health in people with mental illness

    Get PDF
    No abstract available
    corecore