81 research outputs found

    Infrared spectrum of formamide in the solid phase

    Get PDF
    Infrared spectra of solid formamide are reported as a function of temperature. Solid formamide samples were prepared at 30 K and then annealed to higher temperatures (300 K) with infrared transmission spectra being recorded over the entire temperature range. The NH2 vibrations of the formamide molecule were found to be particularly very sensitive to temperature change. The IR spectra revealed a phase change occurring in solid formamide between 155 and 165 K. Spectral changes observed above and below the phase transition may be attributed to a rearrangement between formamide dimers and the formation of polymers is proposed at higher temperatures

    Residue from vacuum ultraviolet irradiation of benzene ices: Insights into the physical structure of astrophysical dust

    Get PDF
    We have irradiated benzene ices deposited at 4 K on a cold, interstellar dust analog with vacuum ultraviolet (9 eV) irradiation for periods lasting from several hours to nearly a day, after which the irradiated ice was warmed to room temperature. Vacuum ultraviolet photoabsorption spectra of the aromatic residue left at room temperature were recorded and showed the synthesis of benzene derivatives. The residue was also imaged using an electron microscope and revealed crystals of various sizes and shapes. The result of our experiments suggests such geometrically shaped dust particles may be a key component of interstellar dust

    Infrared attenuation due to phase change from amorphous to crystalline observed in astrochemical propargyl ether ices

    Get PDF
    Astrochemical ices are known to undergo morphological changes, from amorphous to crystalline, upon warming the ice from lower (10 K) to higher temperatures. Phase changes are mostly identified by the observation of significant changes in the InfraRed (IR) spectrum, where the IR bands that are broad in the amorphous phase are narrower and split when the ice turns crystalline. To-date all the molecules that are studied under astrochemical conditions are observed to follow such a behaviour without significant attenuation in the IR wavelength. However, in this paper we report a new observation when propargyl ether (C3H3OC3H3C_3H_3OC_3H_3) is warmed from the amorphous phase, at 10 K, through the phase transition temperature of 170 K, the crystalline ice being found to strongly attenuate IR photons at the mid-IR wavelengths

    Perspectives on multiscale modelling and experiments to accelerate materials development for fusion

    Get PDF
    Prediction of material performance in fusion reactor environments relies on computational modelling, and will continue to do so until the first generation of fusion power plants come on line and allow long-term behaviour to be observed. In the meantime, the modelling is supported by experiments that attempt to replicate some aspects of the eventual operational conditions. In 2019, a group of leading experts met under the umbrella of the IEA to discuss the current position and ongoing challenges in modelling of fusion materials and how advanced experimental characterisation is aiding model improvement. This review draws from the discussions held during that workshop. Topics covering modelling of irradiation-induced defect production and fundamental properties, gas behaviour, clustering and segregation, defect evolution and interactions are discussed, as well as new and novel multiscale simulation approaches, and the latest efforts to link modelling to experiments through advanced observation and characterisation techniques.MRG, SLD, and DRM acknowledge funding by the RCUK Energy Programme [grant number EP/T012250/1]. Part of this work has been carried out within the framework of the EUROFusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. JRT acknowledges funding from the US Department of Energy (DOE) through grant DE-SC0017899. ZB, LY,BDW, and SJZ acknowledge funding through the US DOE Fusion Energy Sciences grant DE-SC0006661ZB, LY and BDW also were partially supported from the US DOE Office of Science, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research through the Scientific Discovery through Advanced Computing (SciDAC) project on Plasma-Surface Interactions. JMa acknowledges support from the US-DOEs Office of Fusion Energy Sciences (US-DOE), project DE-SC0019157. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the US Department of Energy (DOE) under contract DE-AC05-76RL01830. YO and YZ were supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under contract number DE-AC05-00OR22725. TS and TT are supported by JSPS KAKENHI Grant Number 19K05338

    EUV Analysis of a Quasi-Static Coronal Loop Structure

    Full text link
    Decaying active region 10942 is investigated from 4:00-16:00 UT on February 24, 2007 using a suite of EUV observing instruments. Results from Hinode/EIS, STEREO and TRACE show that although the active region has decayed and no sunspot is present, the physical mechanisms that produce distinguishable loop structures, spectral line broadening, and plasma flows still occur. A coronal loop that appears as a blue-shifted structure in Doppler maps is apparent in intensity images of log(T) = 6.0-6.3 ions. The loop structure is found to be anti-correlated with spectral line broadening generally attributed to nonthermal velocities. This coronal loop structure is investigated physically (temperature, density, geometry) and temporally. Lightcurves created from imaging instruments show brightening and dimming of the loop structure on two different time scales; short pulses of 10-20 min and long duration dimming of 2-4 hours until its disappearance. The coronal loop structure, formed from relatively blue-shifted material that is anti-correlated with spectral line broadening, shows a density of 10^10 to 10^9.3 cm-3 and is visible for longer than characteristic cooling times. The maximum nonthermal spectral line broadenings are found to be adjacent to the footpoint of the coronal loop structure.Comment: 26 pages, 13 figures; Solar Physics 201

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    Spin and charge density in Ni(NH3)4(NO2)2 and the chemical bonding

    No full text
    Polarised neutron and X-ray diffraction experiments have been performed on Ni(NH3)4(NO2) 2, to study respectively the spin and charge distributions in the molecule. The results have been compared with an ab-initio M.O. calculation. 27 % of the spin is transferred to the ligand atoms by covalent interactions. A simple ligand field model, with four empirical parameters, agrees qualitatively, but not quantitatively with the combined spin and charge results. The U.H.F. ab-initio calculation results are also in broad agreement with the experiments, but correspond to a good deal less covalency in the bonding. This emphasises the need to consider configuration interaction and/or a long range "crystal field" in describing bonding in crystalline transition metal compounds
    corecore