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a b s t r a c t 

Prediction of material performance in fusion reactor environments relies on computational modelling, and 

will continue to do so until the first generation of fusion power plants come on line and allow long-term 

behaviour to be observed. In the meantime, the modelling is supported by experiments that attempt 

to replicate some aspects of the eventual operational conditions. In 2019, a group of leading experts 

met under the umbrella of the IEA to discuss the current position and ongoing challenges in modelling 

of fusion materials and how advanced experimental characterisation is aiding model improvement. This 

review draws from the discussions held during that workshop. 

Topics covering modelling of irradiation-induced defect production and fundamental properties, gas be- 

haviour, clustering and segregation, defect evolution and interactions are discussed, as well as new and 

novel multiscale simulation approaches, and the latest effort s to link modelling to experiments through 

advanced observation and characterisation techniques. 
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. Introduction 

This article provides a review of the status of fusion materi- 

ls theory and modelling, largely drawn from the Fusion Materials 

echnology Collaboration Program (FM TCP) workshop held in June 

019. The workshop was organised with the specific aim of dis- 

ussing the opportunities for experimental validation of recent ad- 

ances in theory and modelling that offer the potential to acceler- 

te materials development for fusion energy. The Fusion Materials 

CP is part of a network of autonomous collaborative partnerships 

ocused on a wide range of energy technologies, known as Technol- 

gy Collaboration Programs or TCPs. The TCPs are organised under 

he auspices of the International Energy Agency (IEA), but the TCPs 

re functionally and legally autonomous. Views, findings and pub- 

ications of the Fusion Materials TCP do not necessarily represent 

he views or policies of the IEA Secretariat or its individual mem- 

er countries. 

The workshop was held in Walla Walla, WA and organised by 

ark Gilbert, Rick Kurtz and Brian Wirth. It represents the 6th 

eeting on fusion materials theory and modelling organised un- 

er the auspices of the FM TCP, although there had been a signifi- 

ant gap since the 5th workshop that occurred in Alicante, Spain in 

013. The workshop series has consistently been organised around 

iscussing the latest developments in computational modelling and 

heory of materials behaviour in fusion environments, which are 

haracterised by a high flux of neutrons with an energy spectrum 

eaked at 14 MeV, along with time varying thermal-mechanical 

oading conditions. The simulation paradigm for this computational 

odelling is the so-called multiscale approach, which relies on a 

arameter-passing framework where multiple temporal and spatial 

omains are divided into regimes according to the characteristic 

ength and timescales of the physical phenomena involved. Fig. 1 
2 
rovides a schematic diagram of a science-based, integrated ex- 

erimental and computational modelling approach to investigating 

aterials degradation in a nuclear environment. 

Fig. 1 illustrates the hierarchical parameter passing paradigm of 

ultiscale modelling, presently dominating the scientific thought 

n the field. It begins with the smallest length and shortest time 

cales, and seeks to integrate ab initio electronic structure calcu- 

ations, typically relying on density functional theory (DFT), fol- 

owed by molecular dynamics (MD) simulations, kinetic Monte 

arlo (kMC), rate-theory or phase-field simulations with thermo- 

ynamics and kinetics through the passing of information about 

he controlling physical mechanisms over the relevant length and 

ime scales to predict microstructure evolution during high-energy 

eutron irradiation. Detailed microstructural information generated 

sing the multiscale approach can form a basis for modelling the 

echanical behaviour through meso (represented by 3D disloca- 

ion dynamics) and continuum scale models, which must be incor- 

orated into fracture mechanics models at the continuum scale in 

rder to predict material deformation and failure of individual (fu- 

ion) reactor components, through finite element modelling. In the 

gure, individual modelling techniques are identified in a series of 

inked process ellipses, with representative schematics illustrating 

he type of modeled material behaviour through the length and 

imescales. The passing of information between the scales is rep- 

esented through a series of arrows. 

Of course, multiscale modelling by itself, given the drastic ap- 

roximations involved in some of the models, is insufficient to 

ully predict the performance of complicated engineered struc- 

ures in the fusion nuclear environment. The science-based mul- 

iscale paradigm requires a close integration of modelling predic- 

ions with a suite of experimental characterisation and monitoring 

echniques [1] to enable material engineering [2] , as well as inte- 
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Fig. 1. Illustration of an integrated experimental and computational science-based approach to the multiscale investigation of materials degradation due to high-energy 

particle irradiation. 
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ration of different modelling approaches to support design [3] and 

o provide engineering relevant parameters [4] . This is necessary 

ot only for experimental validation, but also to have the experi- 

ents confirm, or identify, key mechanisms of defect interactions 

ith transmutation gases that will be produced in much larger 

uantities in fusion materials than are typical of fission neutron 

rradiation. A subset of these techniques is represented for mi- 

rostructural characterisation on the lower side of the gray sphere 

nd for experimental mechanical behaviour/testing methods on the 

pper side. As noted earlier, a specific aim of the June 2019 work- 

hop was discussing the opportunities for experimental validation 

f recent advances in modelling and theory. 

The workshop involved 28 contributors with presentations that 

rovided both a review of the current status of knowledge and up- 

ates on the latest advances in computational modelling capability, 

ncluding machine learning, and strove to identify how advances in 

oth simulation and experimental capability could feed back onto 

oth research techniques to advance the capability for simulation 

riven experimental design. A common question within the mul- 

iscale modelling paradigm relates to ensuring that we have opti- 

ised the implementation of scale bridging by defining the most 

mportant mechanisms at the lowest length scales and incorporat- 

ng them into continuum or reduced order models that can con- 

ect to experimental results for benchmarking and validation. An- 

ther common theme in the presentations at the workshop in- 

olved the emerging technique of machine learning, and how that 

ffers the potential to improve reduced parameter models and to 

utomate the scale-bridging parameter-passing within integrated 

ultiscale modelling frameworks (e.g. as discussed for fusion ma- 

erials in [3] ). The remainder of this article reviews the key is- 

ues and outstanding questions within each of the 4 main topi- 

al themes discussed in the workshop: simulating defect produc- 

ion, modelling and observing microstructural evolution, develop- 

ng techniques to predict how microstructure influences properties, 

nd how the behaviour of gas influences material. A final sum- 

ary section reviews the advances and highlights the future chal- 

enges and opportunities for the future implementation of multi- 
f

3 
cale modelling to accelerate materials development for fusion en- 

rgy. 

. Simulating defect production and fundamental properties 

This section describes recent advances in modelling and inter- 

reting the production and behaviour of defects in materials ex- 

osed to the high-energy neutron irradiation that will be produced 

n fusion reactors. The following subsections discuss the develop- 

ent of dynamic simulations combining DFT and MD to explore 

amage creation using quantum accuracy ( Section 2.1 ), and how 

FT calculations are still being used to provide important informa- 

ion about the properties of fundamental defects in crystalline ma- 

erials (2.2) . Then we discuss the use of classical MD to explore 

he interaction of cascades and sub-cascades in W ( Section 2.3 ) 

nd the analysis of the stress fields created by defects in those 

ascades that will have a fundamental impact on materials at the 

acro-scale (2.4) . A final sub-section (2.5) is devoted to describing 

n important recent development in the computational simulation 

f materials, namely how machine learning can overcome the lim- 

tations of both DFT (small scale and short time accessible to dy- 

amic DFT simulations) and classical MD (insufficient accuracy) by 

nabling a more accurate description of a material at atomic level 

t a relatively low computational cost. 

.1. Modelling primary damage on the quantum scale 

When energetic particles interact with materials they can cause 

 number of different effects, including electronic excitations, nu- 

lear reactions and displacement of ions in the material. If the en- 

rgetic transfer to the ions is sufficient, past the threshold displace- 

ent energy (TDE), the displaced ion will not return to its original 

ite, leaving behind a vacancy and forming a self-interstitial, thus 

amaging the crystal structure itself, resulting in a primary damage 

tate. Since the material in a fusion reactor environment will be 

nder continual highly energetic irradiation, primary damage will 

orm all through the materials during the entire operation of the 
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Table 1 

Relaxation volumes of a vacancy and several high-symmetry self-interstitial atom 

defects in body centred cubic metals, computed using density functional theory 

and the GGA-PBE functional [22] . Volumes are given in atomic units �0 = a 3 / 2 , 

where a is the bcc lattice parameter. Volume of a 〈 111 〉 SIA defect is the average 

between a crowdion and a dumbbell configuration. 

element vacancy 〈 111 〉 〈 110 〉 tetrahedral 〈 100 〉 octahedral 

Li -0.53 1.17 1.23 1.23 1.25 1.24 

Na -0.44 1.32 1.35 1.38 1.39 1.42 

K -0.40 1.37 1.40 1.43 1.45 1.45 

Rb -0.40 1.41 1.43 1.46 1.50 1.50 

Cs -0.35 1.45 1.45 1.50 1.55 1.55 

Ba -0.34 1.16 1.11 1.07 0.96 0.91 

V -0.35 1.47 1.47 1.50 1.53 1.53 

Nb -0.45 1.55 1.54 1.57 1.65 1.65 

Ta -0.45 1.52 1.50 1.56 1.64 1.65 

Cr -0.41 1.37 1.43 1.61 1.61 1.61 

Mo -0.37 1.54 1.58 1.62 1.68 1.68 

W -0.32 1.71 1.75 1.79 1.87 1.87 

Fe -0.22 1.66 1.62 1.62 1.86 1.85 
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eactor. The evolution of this damage state, when the point defects 

nd directly generated defect clusters diffuse, recombine and ag- 

lomerate, can lead to a wide variety of changes of materials prop- 

rties that are limiting the safe operation lifetime. 

The primary damage state itself has historically been studied 

sing classical- and semi-classical methods [5–7] and only in the 

ast decade have quantum mechanical effects been incorporated 

nto cascade simulations [8–10] . From the quantum, or ab initio , 

ynamic studies, it has been seen that even though the resulting 

redictions from semi-classical models are often on average rea- 

onable, significant details of the physical interactions are not well 

escribed and fully ab initio dynamic modelling has an important 

ole to play. Ab initio MD is, however, several orders of magnitude 

ore computationally expensive than classical MD, and therefore 

he limits on what can be simulated are severe. The simulation cell 

izes for these types of simulations are currently limited to a few 

undred atoms. The intrinsic character of primary damage simula- 

ions, where a few atoms in the simulation cell experience extreme 

ocal compression during the trajectory, is a clearly limiting factor 

or the computational efficiency. The very small closest approach 

istances that occur, in comparison with canonical static or quasi- 

tatic defect relaxation simulations, render some of the commonly 

sed time-saving approximations invalid. In particular, the minimal 

alence (or frozen core) model that is commonly used in DFT sim- 

lations, cannot be applied with confidence for dynamic primary 

amage simulations, since the close compression will cause orbital 

verlap even for the outermost core shells, which then add to the 

epulsive interaction. It is clearly important to include at least the 

ast core shell explicitly in the simulations to correctly describe the 

ocal compression conditions. However, this comes at a great com- 

utational cost. TDE studies from the literature have used around 

0 0–20 0 atoms for some ceramic compounds [11–13] , while for 

etals it has been shown that at least 500 atoms are needed [10] .

he difference between the two classes is the bonding character 

nd consequent degree of localisation that is clearly stronger in ce- 

amics than in metals, where interactions and dynamics are natu- 

ally more dispersive. Angularly resolved TDE in Fe (see, for exam- 

le, Fig. 1 in [10] ), predicted using either semi-classical molecular 

ynamics (CMD) or using ab initio (quantum molecular dynamics 

QMD]) are relatively similar. The average TDE from these two ap- 

roaches are 39 eV (CMD) versus 32 eV (QMD). However, at finer 

esolution, many differences exist; demonstrating the importance 

f the higher accuracy model (QMD). 

In order to go beyond the threshold events which constitute 

he lower limit of primary damage, some method development is 

learly necessary. Small displacement cascade simulations would 

ave to be carried out in simulation cells of a few thousand atoms, 

nd for timescales of around ten picoseconds at least. For this rea- 

on, the community has been developing methods to speed up 

MD simulations for primary damage events. One such develop- 

ent, LAVAX [14] for LAMMPS, is a method to locally switch po- 

entials on the fly during the trajectory so that the major part of 

he simulation cell, which experiences near-equilibrium conditions 

nd coordination distances, is treated by a minimal valence poten- 

ial, where the frozen core description is maximally utilized; while 

he atoms that take active part in the primary damage formation 

re treated using an expanded set of valence electrons, where at 

east the shell under the canonical valence is explicitly included 

n the potential. In this way the orbital overlap that occurs at 

lose compression conditions is taken into account. Since the pri- 

ary damage event is highly stochastic in nature, one cannot eas- 

ly determine which atoms will undergo strong local compression 

n a general case and therefore the method includes a predictor 

imulation loop, that uses classical MD to determine in advance 

hich atoms will most probably undergo local compression in the 

ext few time steps. A speedup of an order of magnitude can be 
4 
chieved with this method, which opens the door for QMD simu- 

ations of small displacement cascades. 

.2. Structure and volumes of elementary defects 

Historically, the majority of studies exploring the production of 

efects assumed a perfect crystalline state of material before a pri- 

ary collision impact event [6] . This assumption, with some no- 

able exceptions involving for example simulations and observation 

f collision cascades in nanocrystalline materials [15,16] , and stud- 

es of overlapping cascades [17] , have focused attention on the ex- 

loration of the most elementary point defects forming in crystals 

nder irradiation. The structure of these defects as well as their 

ormation and migration energies in pure elements and alloys have 

ow been determined using density functional theory calculations 

18] that not only provided the data required for the quantitative 

nterpretation of observations of electrical resistivity recovery of ir- 

adiated materials [19,20] , but also helped resolve long outstand- 

ng questions related to the observation and interpretation of X-ray 

iffraction data on elementary defects [21] . 

In addition to predicting energies and structures of defects in a 

ariety of materials, density functional theory calculations have re- 

ently enabled performing accurate computation of relaxation vol- 

mes of defects [22,23] . Volumes of defects have long been a sub- 

ect of extensive experimental effort [24] , which showed that mea- 

uring these volumes accurately was challenging. It is also hard 

o evaluate these volumes using atomistic simulations and semi- 

mpirical interatomic potentials because the results prove highly 

ensitive to the assumed many-body law of interaction between 

he atoms [25] . Still, knowing the volumes of defects is critically 

ignificant to modelling radiation effects in materials because these 

olumes determine the magnitude of local lattice deformations 

25] as well as macroscopic lattice swelling or contraction resulting 

rom the accumulation of defects [26] . 

Relaxation volumes of a vacancy and several high-symmetry 

onfigurations of self-interstitial atom defects in all the bcc and 

cc metals, computed using density functional theory [22,23] , are 

ummarised in Tables 1 and 2 . The values still exhibit slight sen- 

itivity to the choice of the exchange-correlation functional used 

n density functional theory calculations [22,23] , but the margin of 

rror is now many times lower than that of values computed using 

emi-empirical potentials or measured experimentally [24,25] . 

From the data given in the Tables we see that the formation 

f a Frenkel pair of a vacancy and a self-interstitial atom defect 

roduces large net expansion of the lattice, which in all the met- 

ls is at least of the order of one atomic volume per Frenkel pair, 
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Table 2 

Relaxation volumes of a vacancy and several high-symmetry self-interstitial atom 

defects in face centred cubic metals, computed using density functional theory 

and the GGA-PBE functional [23] . Volumes are given in atomic units �0 = a 3 / 4 , 

where a is the fcc lattice parameter. Volume of a 〈 110 〉 SIA defect is the average 

between a crowdion and a dumbbell configuration. 

element vacancy 〈 100 〉 octahedral 〈 110 〉 〈 111 〉 tetrahedral 

Ca -0.23 1.41 1.41 1.30 1.36 1.39 

Al -0.24 2.30 2.41 2.47 2.51 2.53 

Ni -0.36 1.79 1.84 1.87 1.87 1.87 

Cu -0.36 1.77 1.83 1.82 1.85 1.85 

Sr -0.21 1.84 1.78 1.66 1.74 1.80 

Rh -0.38 1.96 1.99 2.06 2.08 2.05 

Pd -0.43 1.84 1.88 1.90 1.90 1.92 

Ag -0.26 1.89 1.95 1.94 1.99 2.00 

Ir -0.35 1.94 1.97 2.03 2.08 2.05 

Pt -0.46 2.02 2.02 2.10 2.10 2.13 

Au -0.35 2.04 2.09 2.08 2.17 2.18 

Pb -0.34 1.57 1.66 1.52 1.53 1.52 

Th -0.33 2.00 1.93 2.14 2.08 2.03 
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nd in aluminium exceeds two atomic volumes per Frenkel pair. 

attice distortions produced by the defects are fairly localised, and 

tomic displacements vary as u (r) ∼ 1 /r 2 as a function of distance 

from a point defect. It is this character of variation of displace- 

ents as a function of distance from the centre of a defect, or a de-

ect cluster, that is responsible for the relaxation volume of a point 

efect being a well defined quantity. Indeed, the relaxation volume 

s proportional to the product of atomic displacements u (r) at an 

rbitrarily chosen surface, which varies as u (r) ∼ r −2 , and the sur- 

ace area, which scales as r 2 , producing a convergent result inde- 

endent of r. Lattice distortions generated by the defects generate 

nternal stresses and deformations in materials exposed to irradia- 

ion, and as we show below, the magnitude of these stresses and 

eformations can be very high. 

.3. Effect of cascade morphology on defect clustering in high-energy 

ascades 

It has been recognised that high-energy cascades in Fe-based 

lloys exhibit well-separated cascade fragments known as sub- 

ascades [27,28] . However, cascades in W exhibit no break-ups 

29,30] . Instead, the morphology of high-energy cascades in W 

onsists of interconnected sub-cascades [28,29] . Even though the 

otion of sub-cascade is less clear in such a morphology, the 

orphology is different from that of low-energy cascades where 

o sub-cascades form. By following the evolution of atomic den- 

ity map (to reveal the morphology) and correlating it with the 

ocation of surviving defect clusters, the interconnection of sub- 

ascades is shown to facilitate the formation of large defect clus- 

ers in W cascades [29,31] . A large interstitial cluster forms when 

 highly dense region of displaced atoms emanating from a sub- 

ascade moves into the low-density region (core) of a nearby sub- 

ascade. In such a process, a large vacancy cluster often forms in 

he core of the sub-cascade left behind by the displaced atoms. The 

ifferent morphologies of high-energy cascades between W and Fe 

esult in distinctively different defect cluster size and spatial dis- 

ributions. 

Fig. 2 a shows an example of 〈 100 〉 and 〈 111 〉 interstitial (SIA)

oops, and a 〈 100 〉 vacancy loop formed in a single cascade in W

btained from MD simulations [32] . In fact, these SIA loops both 

orm from highly dense wave front emanating from the same sub- 

ascade whose core becomes the vacancy loop. The number of SIAs 

n the 〈 100 〉 and 〈 111 〉 loops is 61 and 65, respectively, while the

acancy loop contains 153 vacancies. In the figure, dumbbell atoms 

re colored based on their orientation. The average orientation of 

umbbells within an SIA cluster is taken as the Burgers vector of 
5 
he cluster. A misorientation angle θI−V is defined as the angle be- 

ween the Burgers vector of an SIA cluster and the position vector 

f the cascade core from the SIA cluster. The center of mass of the 

argest vacancy cluster (in this case is the 〈 100 〉 vacancy loop) is 

aken as the core location. The distance between the SIA cluster 

nd the core is denoted as d I−V . Fig. 2 b and c show the distribu-

ions of θI−V and d I−V for W cascades at 300 K and 1025 K. 

An important feature of the distribution of θI−V is that it is not 

andom. In fact, the number of clusters with θI−V < 30 ◦ is negli- 

ible. Therefore, it is suggested that multi-scale radiation damage 

ccumulation simulations should use primary defect states as ob- 

ained in the cascades rather than assuming a random distribution. 

erhaps a more crucial aspect that would influence the fidelity 

f multi-scale simulations is that loops with various characters 

e.g. 〈 100 〉 , 〈 111 〉 , and mixed) are generated in cascades [32,33] ,

n which they exhibit vastly different diffusivity in W. Therefore, 

aking into account the kinetics of transformation between differ- 

nt characters, particularly from mixed loops into pure loops in the 

ulti-scale simulations is potentially critically necessary. Research 

o explore the kinetics of mixed loop transformation is needed in 

he future. 

.4. Elastic stress produced by radiation defects 

Defects generated by irradiation are nothing but strong lo- 

alised non-linear deformations of the lattice. Anharmonic inter- 

ctions between atoms in the central, most strongly distorted, core 

egion of a defect structure give rise to the fact that defects can be 

haracterised by well-defined relaxation volumes, which are large 

nd positive for self-interstitial atom defects, and negative for va- 

ancies. These relaxation volumes can be computed using density 

unctional theory, and a comprehensive compilation of relaxation 

olumes of defects computed for a variety of elemental metals is 

iven in Tables 1 and 2 . Relaxation volumes can also be computed 

or clusters of defects [34] , as well as for impurities or solute atoms 

n alloys. 

A defect or a cluster of defects produces elastic stress σi j in the 

attice surrounding the defect. At a relatively large distance from a 

efect, situated at R , this stress can be evaluated using the formula 

35,36] 

i j (x ) = −C i jkl P mn 
∂ 2 G km 

(x − R ) 

∂ x l ∂ x n 
, (1) 

here repeated indices imply summation, C i jkl is the tensor of 

lastic constants of the material and G km 

(x − R ) is the elastic 

reen function. In the above equation, P mn is the elastic dipole 

ensor of the defect, which is a fundamental quantity relating the 

tructure of a defect to the long-range elastic strain that it pro- 

uces in the surrounding lattice [36,37] . Elements of the dipole 

ensor P mn of a defect are related to its relaxation volume by a 

inear transformation [36,38] , showing that the larger is the relax- 

tion volume of the defect the larger is the stress that it produces 

n the surrounding lattice. Equation (1) also explains how the fluc- 

uating internal stress, developing in a material following its expo- 

ure to irradiation, is related to non-linear lattice distortions in the 

ore regions of radiation-induced defects. 

Since stress is a tensor quantity, described by a symmetric 3 × 3 

atrix σi j (x ) involving six independent matrix elements, for the 

urpose of evaluating the overall magnitude of stress it is conve- 

ient to use a single scalar quantity, computed by combining all its 

atrix elements. A suitable scalar quantity, called the von Mises 

tress σv M 

, which conveniently is positive definite, equals 

v M 

(x ) = 

√ 

3 

2 

σi j (x ) σ ji (x ) − 1 

2 

[ σii (x ) ] 
2 
, (2) 
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Fig. 2. (Color online) a) A snapshot of surviving defects in a 100-keV cascade in W at 300 K where vacancies are plotted as black dots while dumbbell atoms are colored 

based on their orientation. Red arrows are position vectors of the cascade core (taken as the largest vacancy cluster) from SIA clusters. Black arrows are the Burgers vector 

direction of the SIA clusters. b) and c) Distribution of misorientation angle of θI−V and distance d I−V of SIA clusters with respect to cascade core (see text) collected from 50, 

60, 75, 100, 150, and 200 keV cascades in W (only clusters with at least 30 SIAs are taken into account). 

Fig. 3. Spatial distribution of stress generated by defects produced by a collision 

cascade event in crystalline bcc W. The cascade shown in the figure was initiated 

by a 150 keV primary knock-on atom. Vacancies (white spheres), and interstitials 

(red spheres), were identified using a Wigner-Seitz defect analysis. The spatial dis- 

tribution of stress is described by the von Mises invariant of the stress tensor, plot- 

ted in a { 211 } plane intersecting the three-dimensional structure of cascade debris. 

Note that close to the defects the von Mises stress is as high as 100 GPa, which is 

comparable to the shear modulus of pure crystalline tungsten μ = 160 GPa. Repro- 

duced from Ref. [39] , with permission from the American Institute of Physics. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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here repeated indices imply summation, and hence σii = σ11 + 

22 + σ33 . In Fig. 3 we plotted the real-space distribution of the 

on Mises stress, computed using equation (2) and showing the 

tress field generated by a cluster of defects formed following a 

igh-energy collision cascade event in crystalline W. 

In agreement with equation (1) , at large distances from the 

efects formed in a cascade, the von Mises stress varies as the 

nverse cube of distance to the centre of the cascade, σv M 

(x ) ∼
 x − R | −3 . Close to the centre of the cascade where the lattice is
6 
trongly distorted, stress is very high, approaching the shear mod- 

lus of the material. This is not surprising since the magnitude of 

he stress reflects the scale of lattice deformation in the core of a 

efect or a dislocation. The magnitude of lattice strain in the core 

f a defect or a dislocation is of the order of 10 to 15% [40–42] . 

Whereas stress diminishes relatively rapidly as a function of 

istance away from an individual isolated defect or a cluster of de- 

ects, the overall level of lattice distortions and deformations in a 

aterial accumulates as the density of defects increases with ex- 

osure to irradiation. For example, if we take 10 nm as a character- 

stic measure of the spatial extent of the stress field of debris pro- 

uced by the cascade shown in Fig. 3 and note that this cascade 

ontains several hundred individual defects, we find that defects 

ith the average volume concentration of 1% per lattice site, cor- 

esponding to the radiation exposure of ∼0.01 dpa, produce high 

nternal stress, fluctuating from one location to another in the bulk 

f an irradiated material on the scale varying from hundreds of 

Pa to several GPa. 

Early studies of elastic interactions on the long-term evolution 

f small radiation-induced defects suggested a small but incremen- 

ally additive effect [43] . Increasing computer power has enabled 

odelling of ever larger defects with consequently stronger inter- 

ctions, and a wide range of elastic effects have now been ob- 

erved in simulations. Large stresses can rotate the habit planes 

f loop-like defects [44,45] , and reduce Peierls barriers to the 

oint where a small change can invoke a spontaneous avalanche 

f relaxation [46] . The elastic interaction between defects can pro- 

uce spatial ordering [47] and elastic self-pinning of loops [48] , 

atching experimental TEM observations. But traction-free bound- 

ry conditions have also been shown to affect the kinetics of defect 

oalescence [49] , and the efficiency of defect sinks [50–52] . These 

bservations imply the evolution of the nanoscale stress state ob- 

erved due to defects [53] , and hence the evolution of defect mi- 

rostructure, must both drive and be driven by component level 

lastic relaxation [45,54] . 

.5. Bridging the gap between quantum and classical methods by 

sing machine learning (ML) 

In the last decade, materials science has been continuously im- 

acted by the emergent fields of mathematical statistics, namely, 

rtificial intelligence (AI) and its subfield machine learning (ML). 

elow, we demonstrate how ML methods can be effectively used 

or the design of accurate interatomic potentials ( Section 2.5.1 ) 
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nd for detection and detailed characterization of structural defects 

 Section 2.5.2 ) 

.5.1. ML Force fields 

An accurate description of condensed matter properties re- 

uires a precise knowledge of the material at the atomic scale. By 

sing empirical interatomic potentials, the energy of bonding be- 

ween atoms is expressed solely as a function of atomic coordi- 

ates, with the electronic degrees of freedom included only im- 

licitly. For example, in metals where the functional form of the 

ensity of States is relatively simple, the Embedded Atom Method 

EAM) potentials [55–60] are valid and widely applied. For mate- 

ials under irradiation, there are two major reasons that drive the 

ommunity towards the methods based on ML. Firstly, the fitting 

rocess of traditional potentials is limited and rigid. Facilitated by 

he continuous increase in computational power and parallel com- 

uting, ab initio approaches regularly reveal new hidden aspects of 

efects. Due to constantly increasing complexity, development of 

ertinent empirical potentials becomes more and more challeng- 

ng and implies a risk of overfitting. Secondly, a detailed analysis of 

xisting numerical methods in material science suggests that there 

s a gap between less accurate empirical methods that scale as N 

2 

r lower ( N is the number of atoms) and more accurate electronic 

tructure calculations, that scale as N 

3 or higher. AI methods can 

e employed to overcome the limitations of traditional force fields 

nd to bridge the gap between ab initio (≥ N 

3 ) methods and em- 

irical (≤ N 

2 ) potentials. 

The first attempt to couple artificial intelligence and atomic- 

cale materials science was proposed by Behler and Parrinello in 

007 [61] . Compared to the traditional approach, the size and con- 

ent of training database has a strong impact on accuracy and 

ransferability of the ML potential. Moreover, computational cost 

nd accuracy of ML potentials depend on the underlying ML for- 

alism and type of atomic descriptor. Atomic descriptors map the 

ocal atomic environments (LAEs) from R 

3 N space to a space R 

D 

ith fixed dimensionality, referred to as the descriptor space. De- 

criptor mapping from LAEs into descriptor space is non-linear 

nd most commonly includes distances and/or angles between the 

toms [61–63] , spectral decomposition of atomic densities [62–65] , 

r involved tensorial description of atomic coordinates [66–69] . Al- 

ernatively, descriptors can be hybrid [70] , based on the scaling 

avelets transformation [71,72] , similarity distances between the 

AEs [63,73,74] or generated by a specially-designed deep-learning 

eural Netwrok (NN) [75–78] . The (statistical) ML fit can be per- 

ormed such as the relationship between atomic energies and de- 

criptor components are linear [70,79–84] or non-linear, e.g., based 

n NNs [61,85–88] or kernel methods [89–96] . Some of the ker- 

el models are formalized in the ever-growing field of the statis- 

ical on-the-fly learning methods [94,96,97] . Here, it is worth not- 

ng that linear ML (LML) model does not imply a linear relation 

etween the phase space and the observable. Any non-linear re- 

ression becomes linear if the domain of the regression function is 

rojected into a space with a sufficiently large number of dimen- 

ions. 

In the context of modeling radiation-induced defects, LML po- 

entials have some advantages compared to kernel methods as 

hey offer a good tradeoff between accuracy and computational ef- 

ciency [70] . 

The main advantages of this method (compared, for instance, to 

ernel methods) is that the size of the training database does not 

ffect the numerical cost of the potential. Moreover, LML method 

s relatively simple to implement. As for any empirical potential, 

otal energy of the system can be represented as the sum of lo- 

al energies of each a atom, i.e., E = 

∑ 

a εa . According to the LML

ormalism, each local energy is linearly proportional to the descrip- 

or components εa = β0 + 

∑ 

k D 

a 
k 
βk , where β are the D + 1 param- 
7 
ters of the potential and D 

a 
k 

is the k th component (among D ) of 

he descriptor on the a th atom. From this formulation of energy, 

he forces and the stress of the system can be further deduced 

70,79,80] . In order to capture some aspect of a complex energy 

andscape that are not accurately described by LML, a quadratic 

egime preconditioned by the linear interpolations can be applied. 

n this formalism, called Quadratic Noise ML (QNML) [98] , we 

t only the error between the reference DFT values and LML fit 

y using a quadratic coupling in the components of the descrip- 

ors εa 
DF T 

− εa 
LML 

∼ ∑ 

k,k ′ βk,k ′ D 

a 
k 
D 

a 
k ′ . This procedure ensures a simi- 

ar transferability of LML and QNML potentials. The QNML poten- 

ials have 1 + D + D 

2 parameters. 

A typical fit of LML potential for W is presented in the Fig. 4 .

he fit is performed on the extensive databases containing more 

hat 10 0,0 0 0 LAEs from various structures, such as, vacancies, in- 

erstitials, dislocations, stacking faults, snapshots from MD trajec- 

ories, etc. The LML fit provides the values of the mean average 

rror (MAE) of energy per atom, force and virial stress below 5 

eV, 60 meV/ ̊A and 12 meV/ ̊A 

3 , respectively. To our knowledge, 

one of the traditional potentials are able to reach such small er- 

ors. Small MAEs of fit ensure the potential’s accuracy with respect 

o the training database. The properties that are known to be chal- 

enging for the EAM formalism, e.g., binding energy of di-vacancies 

99–101] , shape of the Peierls barrier, or migration barrier of tri- 

acancy [99] , can be readily fitted by ML potentials if pertinent 

onfigurations are included in the database. 

A critical issue of ML potentials is their generalization power 

r ability to correctly predict the physics of some particular sys- 

em that is not included in the fitting database. Let us illustrate 

his aspect with the ability of W ML potentials to compute the mi- 

ration barrier of tri-vacancy clusters. Fig. 5 shows the tri-vacancy 

igration barrier computed with semi-empirical and ML poten- 

ials. None of the W ML potentials presented here include the sad- 

le point of the tri-vacancy ( V 3 ) in the fitting database. From DFT 

e know that the saddle point of V 3 is very low (1.15 eV) com- 

ared to the migration barrier of V 1 or V 2 (around 1.7 eV [99] ).

or V 3 , LML and QNML provide the correct magnitude of the mi- 

ration barrier, while the Gaussian Approximation Potentials (GAP) 

otentials [104,105] have an error of up to 55% and also show a 

ouble-hump shape ( Fig. 5 ). Such poor transferability results from 

he highly non-linear character of the GAP formalism. In order to 

mprove the performance of GAP potentials in such cases, it is es- 

ential to enrich the training database. The missing configurations 

an be revealed at the database design stage using the distortion 

cores and an outlier analysis, as was recently demonstrated for 

e [83] . A big error in migration barriers will have a strong im- 

act on the predictions of defect kinetics under irradiation and the 

nterpretation of processes during resistivity recovery experiments. 

tage IV recovery will be strongly impacted by the fast diffusion of 

acancy clusters V n with n > 2 affecting the prediction of the size 

nd the density of vacancy clusters at temperatures over 300 K. 

.5.2. ML Structural analysis 

Present-day ML potentials allow one to perform accurate sim- 

lations of defect nucleation, recombination, migration and tran- 

ition at the atomic scale. However, extracting the relevant infor- 

ation about defects and their collective behavior from atomistic 

alculations remains a challenge. In particular, analysis of radiation 

nduced damage requires a lot of effort and implies using several 

ifferent methods for the detection of different types of defects. 

 recent study [83] proposes a universal strategy for defect de- 

ection based on statistical distances provided by outlier detection 

odels, like the Minimum Covariance Determinant (MCD) method. 

n this approach, each atom is characterised by a distortion score 

hat describes a statistical distance from a reference distribution 

n the feature space of atomic descriptors. The reference distribu- 
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Fig. 4. Linear ML (LML) potential for W. Each subplot provides a comparison of the energies, forces and stress with the corresponding DFT values from the database. Atomic 

systems that carry information on different materials properties (e.g., containing different structural defects) are depicted with different colors. 

Fig. 5. Energy barriers of three-vacancy migration in bcc W computed using dif- 

ferent interatomic potentials. The comparison is done between the semi-empirical 

potentials: M01 and M02 [102] , MN17 [99] , DMND [103] , and the Ml potentials: LML 

and QNML [70,98] , GAP14 [104] and GAP19 [105] . The dotted grey line indicates the 

DFT calculations from Ref [99] . 
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ion can be constructed from LAEs of a defect-free crystalline sys- 

em at a given temperature or from a subset of atoms of particular 

nterest (e.g., a particular defect structure). Constructing a train- 

ng data set with thermal noise avoids sensitivity of the defect de- 

ection model to atomic perturbations, a common shortcoming of 

onventional geometry based methods. Based on the local distor- 

ion scores, structural defects are identified as atomic outliers de- 

iating from the bulk structure. The defect detection strategy using 

he distortion score is universal, i.e., it performs well for defects of 

 different origin and the same technique can be applied for the 

etection and analysis of dislocations, interstitial atoms and vacan- 

ies. The detected clusters of atomic outliers include the defect it- 

elf and its nearest atomic environment. Fig. 6 illustrates the struc- 

ures of crowdions and screw dislocation cores detected in W. The 

ifference in magnitude of the distortion scores within the out- 

ier cluster enables a stratified description of the defect and allows 

ones with different levels of atomic distortion to be distinguished 

as depicted for crowdions in Fig. 6 a,b). The atoms forming the de- 

ect are characterised by bigger distances d RB compared to their 

earest environment. 
8 
Interestingly, when computed with respect to the distribution 

f the underlying bulk structure, distortion scores exhibit an in- 

rinsic correlation with local atomic energies. This correlation is 

ue to a similarity between the formalism that describes the lo- 

al atomic energy of materials in quantum mechanics (QM) and 

he statistical distances based on a sample covariance matrix (see 

ef [83] . for more details). Fig. 7 illustrates a correlation of the local 

nergies in W with various statistical distances that use different 

eights, such as powers of eigenvalues of the sample covariance 

atrix. The remarkable correlations with R 2 > 0 . 9 allows the con- 

ideration of distortion scores as a surrogate model for local atomic 

nergies. Moreover, the stratified definition of defects via distortion 

cores, can be used to identify the atoms with the most important 

ontribution to the mean force of the system. This strategy can 

e used to accurately reconstruct the migration barriers from the 

ean force calculations [83] . Such an approach is of particular in- 

erest for defect localization in the simulations like QM/MM (Quan- 

um Mechanics/Molecular Mechanics), where the definition of total 

nergy is ambiguous. The distortion score coupled with outlier de- 

ection ML techniques can also serve to establish a qualitative cri- 

erion for transferability / reliability of kernel ML potentials (e.g., 

AP) for modeling a given defect structure. 

. Analysis of microstructural evolution 

This section describes recent advances in both interpretation 

f experimental observations, for example in counting objects in 

ransmission Electron Microscopy (TEM) micrographs or clustering 

n Atom Probe Tomography (APT), which produces the reliable data 

ets needed for simulations to compare against, and the advance- 

ent of the computational techniques, particularly those based 

n Monte Carlo, that are now able to produce statistics compa- 

able with experiment. Section 3.1 below discusses the challenges 

ssociated with linking the short timescale modelling of damage 

roduction to microstructural evolution that happens on experi- 

ental timescales. Section 3.2 summarizes the available experi- 

ental observation techniques and 3.3 describes how these pow- 

rful techniques can be used to interpret the interaction of de- 

ects. The next subsection (3.4) describes how the defect statistics 

btained from advanced observations of irradiated materials can 

ow be compared to statistics obtained from kinetic Monte Carlo 

kMC) simulations, allowing understanding that neither could pro- 

ide alone. Section 3.5 reviews APT and describes the latest anal- 

sis techniques and their application to understanding segregation 

nd clustering in irradiated materials. Recent simulations of seg- 
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Fig. 6. The structures of defects detected in bcc W using distortion score of local atomic environments based on robust MCD statistical distances d RB : (a,b) I 
〈 111 〉 
1 −2 

crowdions, 

(c) 1 
2 
〈 111 〉 dislocation core and the saddle point structure when gliding in {110} plane. The structures of crowdions (a,b) are “stratified” according to the distortion level of 

nearest defect environment. 

Fig. 7. Correlation of the local energy from W-LML potential with various statistical distances that were proposed in Ref [83] . The subplot (a) illustrate the standard MCD / 

Hotteling’s T 2 estimator; (f, g, h) correspond to the variations of statistical distances inspired by QM. 
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egation are then described ( Section 3.6 ) before the section con- 

ludes with a discussion (3.7) of the approaches that can link mi- 

rostructure statistics to the macroscale. 

.1. Relating damage production to microstructure 

The production of defects by energetic particles, such as ions 

r neutrons, occurring on picosecond time scales, can be studied 

y MD methods as outlined in the previous section. However, go- 

ng beyond the nanosecond timescales with MD, especially when 

ulti-million atom calculations have to be considered, is still not 

easible. At the same time, there is no experimental technique that 

an provide information on the time and length scales of a single 

ascade event. Therefore, we are still lacking a direct comparison 

etween primary damage obtained from MD and experimental ob- 

ervations. Methods such as kinetic Monte Carlo (kMC) and rate 

heory or cluster dynamics are the approximations that are often 

sed to expand both the time and length scales well beyond the 

anoseconds and nanometer capabilities of MD, to enable compar- 

son with microstructures observed experimentally. For example, 

here are numerous studies in the literature where Monte Carlo 

imulations have been used to study radiation damage evolution 

particularly due to cascades), including [106–120] . Cluster dynam- 

cs/rate theory has also been used widely to study radiation effects, 

ee e.g. [121–127] . 

Understanding the connection between primary damage and 

icrostructure developed for a given irradiation condition is one 

f the most important results that these tools can provide. Cur- 

ently, ion implantation is commonly used as a means to study 
9 
efect production and to reduce the cost and difficulties that in- 

olve neutron irradiation. However, the use of ion beams to un- 

erstand radiation damage produced by neutrons must be done 

ith a careful analysis of their differences and limitations, as has 

een recently described by Zinkle and Snead [128] . In certain cases, 

 fairly good agreement between the microstructure produced by 

eutron and ion irradiation has been obtained, considering a tem- 

erature shift to account for the differences in dose rate [129,130] . 

owever, some controversy still remains. Is a temperature shift ap- 

licable to all cases? Can ions be used, in general, for emulating 

eutrons or just as a means for model validation? What is the sig- 

ificance of stress fields affecting the evolution of microstructure 

n a thin layer exposed to ion irradiation? Regardless, understand- 

ng damage production and microstructure evolution requires us- 

ng a suitable physically justified models that can match experi- 

ental conditions, and kMC models in this case have advantages 

n comparison with direct MD simulations. 

.2. Direct observation of microstructure 

Changes in the microstructure of metals due to irradiation can 

e characterised by a series of experimental techniques such as 

EM, Positron Annihilation Spectroscopy (PAS), APT or Small An- 

le Neutron Scattering (SANS). From all the different techniques 

EM is arguably the most widely used in the evaluation of mi- 

roscale damage of fusion materials. TEM can provide information 

bout concentration of defects, defect size distributions, defect na- 

ure (vacancy or interstitial type) and defect type (loop and their 

rientation, voids, etc.). Fig. 8 shows an example of the microstruc- 
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Fig. 8. Example of TEM characterization of damage produced by 500 keV Fe + ir- 

radiation of a UHP Fe thin film at room temperature and 0.5 dpa. From Ref [131] ., 

reprinted with permission from Elsevier. 

Fig. 9. One dimensional diffusion of a 1 
2 

[11 ̄1 ] loop in ultra-high purity Fe at 575 K 

observed using in-situ TEM. From Ref. [132] , reprinted with permission from AAAS. 
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Table 3 

Elastic constants for interaction between nano-scale 

defects. The first row is for loop-loop interactions 

( Eq. 4 ), and the second for loop-sphere ( Eq. 5 ), in 

units of eV/ ̊A 3 . Critical sizes for a defect placed 2nm 

from a 50-interstitial loop are given where the in- 

teraction energy reaches 1 eV. 

Iron Molybdenum Tungsten 

�2 
0 μ

4 π(1 −ν) 
5.0 21.8 27.0 

�2 
0 μ(1+ ν) 

6 π(1 −ν) 
4.3 23.1 19.1 

N � 
loop −loop 

32 6 7 

N � 
loop −void 

2210 97 102 
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ure observed under TEM of a UHP thin film of Fe irradiated with 

00 keV Fe + ions at room temperature and 0.5 dpa. In this case, 

ecoration of a dislocation with defects produced by the irradia- 

ion can be observed. The majority of the defects here are loops of 

 0 〈 100 〉 type [131] . 

Moreover, in-situ TEM enables dynamic observations of mi- 

rostructural evolution during annealing and/or irradiation. This 

echnique has shown that phenomena such as one-dimensional 

iffusion of self-interstitial and vacancy clusters, predicted initially 

y computer simulations, does indeed occur in metals [ 132,365 ]. 

ig. 9 shows the diffusion of a 5.9 nm diameter 1 
2 [11 ̄1 ] loop in

ltra-pure Fe observed by in-situ TEM at 575 K. In this case loops 

ere produced by high-energy electron irradiation. 

.3. Trapping and interaction between defects 

There are discrepancies as to the migration energies measured 

xperimentally and those obtained in the simulations. Despite the 

ignificant experimental and theoretical effort devoted to eluci- 

ating the source of this discrepancy, there is still not a com- 

letely satisfying answer. Carbon or other impurities, coupled to 

acancies, have been proposed as possible traps for the rapidly 

iffusing interstitials in iron [133–135] , while more recent stud- 

es [136,137] have identified the importance of the interaction be- 

ween minor solute atoms and SIA loops in α-Fe and RPV steels, 

here the loops are either trapped or their growth is slowed [136] . 
10 
Elastic interactions also result in the self-trapping of defects 

roduced by irradiation. The formula needed to find the elastic in- 

eraction energy between two defects, A and B, in the far field limit 

here their separation is greater than their characteristic size, is 

oth simple and elegant [36,38] : 

 

A −B 
int 

= P (A ) 
i j 

(
∂ 

∂x j 

∂ 

∂x l 
G ik (x ) 

)
P (B ) 

kl 
, (3) 

here P (A ) 
i j 

and P (B ) 
kl 

are the dipole tensors of the two interacting 

efects. These dipole tensors can be computed by integrating the 

tress that the defect produces in a simulation cell, over the vol- 

me of the cell [138,139] as P i j = − ∫ 
V σi j (r )d 

3 r , and G ik (r ) is the

lastic Green’s function that we used earlier when evaluating the 

tress field of a defect using equation (1) . 

In the isotropic elasticity limit, we can go further and derive 

losed form expressions for the scaling laws determining the elas- 

ic interaction between defects [140] . For a pair of dislocation loops 

hose centers are separated by r, the energy of elastic interaction 

s 

 

loop A −loop B 
int 

= 

�2 
0 μ

4 π(1 − ν) 

1 

r 3 
N 

(A ) N 

(B ) × ( angular terms ) , (4) 

here N 

(A/B ) are the number of point defects in the loop, �0 is the 

tomic volume, μ is the shear modulus and ν the Poisson ratio. For 

he interaction between a loop and a spherically-symmetric point 

efect, such as a spherical void [140] , 

 

loop −void 
int 

= 

μAb�rel 

6 π r 3 
(1 + ν) 

(1 − ν) 
× ( angular terms ) 

= 

μ�2 
0 

6 π

(1 + ν) 

(1 − ν) 

N(�rel / �0 ) 

r 3 
× ( angular terms ) (5) 

here �rel is the relaxation volume of the spherical defect, A is 

he area of a loop containing N point defects and b = | b | is the

agnitude of the Burgers vector of the loop. 

The experimental evidence for elastic interactions being a driv- 

ng force for microstructural evolution is overwhelming, in loop 

afting [47,141,142] , self-trapping [48] , and even the observation of 

train fields in weak-beam-dark-field TEM. With Eqs. 4 and 5 we 

an test where elastic interactions are important in simulations 

ore generally. For an a 0 / 2 〈 111 〉 loop containing 50 point defects,

ust visible in the TEM, we can find the minimum size defect N 

� 

equired to produce an interaction of 1 eV at a distance of 2 nm. 

or the relaxation volume of a void we can use the capillary ap- 

roximation �rel / �0 
 −αN 

2 / 3 , with α approximately determined 

rom the vacancy relaxation volume [22,23] . These critical sizes are 

iven in Table 3 . We see that a TEM visible loop is strongly inter-

cting with small interstitial clusters at 2 nm separation: for iron 

he critical size is 32 interstitials, for tungsten only seven. Loop- 

oid interactions are slightly weaker, and the critical void size for 

he same 1 eV interaction is over 20 0 0 vacancies (a 3.7 nm diam-

ter void) in iron, or 100 vacancies in tungsten. This simple cal- 

ulation suggests elastic interactions should never be ignored in 
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Fig. 10. Defect denuded zone and enhanced void region in Fe3Cr irradiated with 

a dual beam of 8 MeV Ni and 3.6 MeV He up to 30 dpa and 0.1 appm He/dpa at 

500 ◦ C [145] . 
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Fig. 11. Example of results from an OkMC calculation of 500 keV Fe irradiation of 

pure Fe (a) projection of all defects along the sample thickness (b) histogram of 

defect sizes. Image courtesy of JP Balbuena. 
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5

i

imulations when interstitial defects are of TEM visible size. Fur- 

hermore, the strength of elastic interaction is proportional to the 

roduct of relaxation volumes of defects, and for dislocation loops 

t scales quadratically with loop diameters. This suggests that the 

ole of elastic interactions increases rapidly with the characteristic 

patial scale of the microstructure. 

Besides the direct observations performed using in-situ TEM, 

ne-dimensional diffusion of dislocation loops can be inferred from 

he microstructure developed under irradiation. One effect is the 

xistence of defects beyond the end of range of damage and the 

oss of precipitate coherency in this region which is believed can 

e explained by a combination of 3 dimensional and 1 dimensional 

iffusion of defects [143,144] . A second piece of evidence comes 

rom the presence of a region with enhanced void formation close 

o a void denuded zone near a grain boundary or a surface. One 

xample of such behaviour is shown in Fig. 10 ) for Fe3Cr irradi- 

ted with a dual beam of 8 MeV Ni and 3.6 MeV He up to 30

pa with a 0.1 appm He/dpa rate and at 500 ◦ C [145] . When the

ensity of defects become high and the effective sink strength in- 

reases above a certain value ( ≈ 1 × 10 14 /m 

2 ) the one-dimensional 

igration of defects is no longer observed. 

.4. Statistics of defects and Monte Carlo models for microstuctural 

volution 

Calculations can be performed to simulate microstructures pro- 

uced under irradiation. In principle, MD, with appropriate inter- 

tomic potentials can provide information about the damage pro- 

uced by the irradiation. In W, where large clusters of defects vis- 

ble under TEM are formed in a single cascade, a fairly reason- 

ble agreement can be established in the low dose limit between 

EM measurements and MD simulations [33,146] . This may also 

e the case in pure Fe, though the defects produced in cascades 

re smaller and consequently more difficult to detect. MD sim- 

lations [147] suggest a power-law size-frequency distribution of 

efects produced in Fe, albeit with a higher power law exponent 

han seen in W, so that few interstitial clusters with size > 50 

oint defects are created, fewer than 0.001 per Primary Knock-on 

tom (PKA). This size is at the limit of TEM detection, but they 

ave been recently observed even at very low dose (0.0015 dpa) in 

ltra-high-purity Fe [148] . The apparent contradiction between this 

esult and earlier studies suggesting that cascade overlap is neces- 

ary to observe defects in heavy-ion irradiated iron [149,150] may 

e due to the difficulty of making a positive identification of a loop 

maller than 1 nm [151] , or because small loops are inherently ex- 

remely mobile on the experimental time-scale [152] and respond 

ore readily to elastic image forces induced by the proximity of 

he surface in a thin foil experiment [51] . 
11 
In this case, as mentioned above, and in others, it is necessary 

o make use of kMC and rate theory or cluster dynamics mod- 

ls. For recent descriptions of these methods see Refs [153–155] . 

he first passage, rate theory and cluster dynamics models have 

lso been integrated into phase-field models to deal with fast one 

irectional diffusion and the effect of defect mean fields on mi- 

rostructure evolution [156–158] . Although most phase-field mod- 

ls are qualitative (or are not accurate in terms of length scale 

nd the input of thermodynamic and kinetics properties of defects) 

here is some good progress in more quantitatively describing the 

hermodynamic and kinetic properties of defects in irradiated ma- 

erials. For example, a thermodynamically consistent model with 

he input from atomistic simulations and Adaptive kMC (AkMC) 

as been proposed [159,160] . Finite element methods and phase- 

eld approaches have also been coupled to understand the effect 

f microstructure evolution on thermomechanical property degra- 

ation and material performance [161,162] . 

Rate theory or cluster dynamics can provide information about 

efect concentration and size distributions but, by being mean 

eld methods, they are not able to capture the individual defect 

tructures and the spatial heterogeneity of the damage produced 

nder irradiation. KMC methods, however, while using essentially 

he same input parameters as cluster dynamic models, are able 

o follow individual defects and therefore the microstructure pre- 

icted can be directly compared to that obtained experimentally, 

n particular to TEM characterization. Fig. 11 shows an example of 

n object kMC (OkMC) simulation of an 85 nm thin film of Fe ir- 

adiated with 500 keV ion. 

A direct comparison between OkMC and TEM is possible, but 

here are issues which must be accounted for when considering 

efect count or average size. Some effects can be corrected sim- 

ly, while others require a much more careful consideration of the 

hermal history of a sample. 

It is regularly quoted that there is a minimum defect size ob- 

ervable in a TEM [146,151,163,164] . While this is true, and agrees 

ith the results obtained using X-ray diffraction and other means 

f microstructural examination, strictly speaking this is the limit 

etermined by the aperture, and small defects slightly larger than 

his small size limit may be undetectable due to the faintness of 

heir intensity profile. This aspect of TEM observations is problem- 

tic from the perspective of making a comparison between the- 

ry and experiment as it means that the confidence interval for 

 count of small defects is very broad compared to that for large 

efects. A frequency vs size distribution is also unlikely to be a 

ormal distribution so that reporting a sample mean and standard 

eviation could be misleading. Sand et al. [165] estimated the un- 

ounted small defects by looking at the distribution of intensities 

f defects as a function of size. From this they determined that the 

ount of the smallest defects (1-2 nm) might be low by a factor of 

, in broad agreement with Refs [146,163,164] . Importantly, includ- 

ng this confidence interval brought their theoretical estimate for 
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Fig. 12. Automated TEM analysis of 150 keV self-ion irradiation of UHP tungsten at 

cryogenic temperature [167] gives a size-frequency distribution. The shading of the 

bars indicate significance levels ( α = 0 . 001 (black), α = 0 . 25 (mid-grey), and α = 

0 . 15 (light grey). The confidence interval for small, faint defects is very wide, which 

may help matching experiment to simulation. Figure reproduced from Ref [167] . 
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he number of observable defects in line with experiment, where a 

imple ‘square-root-N’ estimator of the error in the observed count 

ould not have done. 

A second effect which may be prevalent in TEM observations 

f higher damage dose is the systematic reduction in count due to 

he shadowing of one loop by another - simply put if two dislo- 

ation loops happen to almost coincide along the viewing direc- 

ion they cannot be individually resolved. We can estimate when 

his effect becomes significant. If all defects image with a 2D Gaus- 

ian profile with half width σ , then they will be indistinguishable 

hen there is no dip in intensity in a line profile between their 

eaks. This happens when their separation is less than 2 σ . If the 

efects are placed randomly and homogeneously, then the num- 

er found per unit area will be Poisson distributed. The probabil- 

ty that adding one defect will increase the distinct spot count is 

he probability that there are no neighbours within a circle radius 

 σ , ie p 0 = exp [ −4 Nπσ 2 /A ] , where N is the true spot count and

 the micrograph area. The probability that adding one defect will 

ecrease the distinct spot count by linking an existing pair is ap- 

roximately the probability there are two neighbours in the circle 

adius 2 σ , ie p 2 = 1 / 2 (4 N πσ 2 /A ) 2 exp [ −4 N πσ 2 /A ] . Thus 

d 〈 N count 〉 
d N 


 exp 

[
−4 Nπσ 2 

A 

]( 

1 − 1 

2 

(
4 Nπσ 2 

A 

)2 
) 

o 〈 N count 〉 
 N exp 

[
−4 Nπσ 2 

A 

](
1 − 2 Nπσ 2 

A 

)
. (6) 

he expected observed count rises linearly with the number of de- 

ects until they are so dense they start to overlap. Then the ob- 

erved count reaches a maximum before falling again. 

A third possibility is that not all loops are visible under the 

maging conditions because of the g · b = 0 invisibility criterion 

151] . Again, a simple correction for this factor is possible if the 

ange of g vectors sampled by the experiment is known. Prokhodt- 

eva et al. [166] suggested how one can compute the relative pro- 

ortions of a 0 / 2 〈 111 〉 and a 0 〈 100 〉 loops using a statistical method

ased on the invisibility criterion and a range of g vectors. The 

ame argument can be used to estimate the invisible fraction, if it 

ay be safely assumed there is no bias due to the crystallographic 

rientation of the foil and no long-range ordering of Burgers vec- 

ors. 

A fourth possibility we can consider is that some defects may 

e invisible in the TEM due to their depth. This can occur when the 

xtinction distance- ξg = πV/ (λ�g ) , where V, λ and �g are the unit 

ell volume, electron wavelength and structure factor respectively- 

s smaller than the foil depth. In this case there are periodic layers 

here the incident and reflected electrons exhibit beats in inten- 

ity. This may be used to estimate the fraction of missing defects 

f a simulated depth profile of defects is known. 

The possible corrections to observed microstructural metrics of- 

ered above may be best employed as possible systematic biases 

nd error bar contributions to the simulated data, where the (quite 

road) assumptions may be tested or corrected. But work to make 

he comparison between simulation and experiment has recently 

een made more quantitative by a systematic approach to the con- 

dence intervals in TEM observations. Mason et al. [167] consid- 

red the possibility that an automated computer analysis of mi- 

rostructure [146,168] might be making type-I errors - false pos- 

tive identification of defects. This was done by constructing a t- 

tatistic, t � = Ī / (σ / 
√ 

n ) , where Ī is the average intensity of a spot

overing n pixels given the background noise level σ . t � is high 

hen the spot is large and bright and low when the spot is small

nd faint. This can be done for each detected spot but can also be

one if the same code is forced to find spots in an unirradiated mi- 

rograph. By comparing the distributions of the two, it is possible 
12 
o determine the confidence interval for false positives. This gives 

 meaningful error bar to the smallest, faintest spots, but more- 

ver gives a probability distribution function for the experimental 

bservation, see Fig. 12 . These experimental results therefore can 

e directly used in standard statistical hypothesis testing against 

imulated results. 

A final challenge comparing OkMC to TEM can be much harder 

o correct for. A defect observed in situ in the TEM must be sta- 

le over the experimental timeframe. But the converse is also true: 

 defect which is not stable over the experimental timeframe will 

ot be observed in the TEM. In the case of a fast migrating species, 

uch as a bcc crowdion in a perfect pure tungsten, the diffusion 

onstant can be as much as 10 4 μm 

2 /s, even at liquid nitrogen tem- 

eratures [169] . The time taken to diffuse to a surface or other sink 

s likely to be very small compared to the experimental time. But 

onsider the effective diffusion coefficient of such a crowdion in 

ow carbon concentration background. We might expect the diffu- 

ion constant to be reduced by order exp (−E b /k B T ) , where E b is a

ypical binding energy, say 0.62 eV in W [170] . The room temper- 

ture diffusion constant is reduced by eleven orders of magnitude 

t room temperature, down to 10 −1 nm 

2 /s. A defect with this dif- 

usion constant would hardly appear to move in an in situ TEM 

ovie, but over six months (a reasonable cool-down period after 

eutron irradiation) it may move over a distance of order 1 m. It 

s therefore vital that not just the flux and fluence are reported for 

x situ TEM studies, but also that the time the sample was kept at 

oom temperature is recorded and accounted for. 

.5. Irradiation-induced segregation and chemical decomposition 

Irradiation can also induce local changes in chemical composi- 

ion such as segregation of alloying elements or precipitation. APT 

as proven to be an excellent method to obtain detail informa- 

ion of these phenomena in irradiated materials. Recently, there 

as been some success in comparing the results from such ex- 

eriments directly to AkMC (see, for example, [154] ) and OkMC 

e.g. [137] , although there are still outstanding questions as to the 

ppropriateness of comparisons due to the (currently unavoidable) 

imitations of the spatial and chemical resolution of APT. 

A limitation in our understanding of point defect mobility and 

he development of dislocation loops and cavities, is the presence 

nd role of impurities. The presence of carbon, nitrogen, phospho- 

us, silicon, copper and other impurities is taken into account in 
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n approximate way in several microstructure evolution models. 

or example, OkMC has been applied to consider the effect of C in 

e [113,171] and W [172,173] , Cu in Fe [110] , and the impact on mi-

rostructural evolution of Cr in Fe [115,116] and Re in W [174,175] .

imilarly, AkMC models have been applied in binary alloys to in- 

estigate the effect of impurities and solutes on point-defect mo- 

ility (e.g. [176–179] ). This is important because APT consistently 

hows that these elements are present, form small clusters, and 

egregate to structural defects. Heavy ion irradiation experiments 

ave also been known to introduce significant levels of impurities 

180] . For alloyed systems, APT has provided a unique perspective 

n solute clustering and segregation phenomena in a wide range 

f irradiated alloy systems. The technique also has played a unique 

ole in understanding the role of dose rate on phase transforma- 

ion, providing complementary information to the traditional TEM 

bservations, generally focused on dislocation loop and void imag- 

ng and quantification. 

As an example, several independent studies on the Fe-Cr sys- 

em have recently converged and the results paint a detailed and 

oherent description of the effect of irradiation on phase decom- 

osition in this particular system. Consistent with the very slow 

hermal diffusion kinetics of Cr in α-Fe [181,182] , precipitation of 

he α′ phase under thermal aging exhibits notoriously slow kinet- 

cs, requiring tens of thousands of hours in the temperature range 

f 450–550 ◦C to be noticeable using conventional characterization 

echniques [183] . At lower temperatures, the kinetics of decompo- 

ition are too slow, leading to uncertainty on the phase diagram 

see e.g. [184] ). Alternatively, microstructural APT data is available 

or a range of irradiation conditions, all performed at the same 

rradiation temperature of 300 ◦C, allowing direct comparison be- 

ween experiments. Under neutron irradiation at dose rates lower 

han 10 -7 dpa/s, nm scale α′ precipitates have consistently been 

eported in binary Fe-Cr alloys with Cr contents greater than 9 

t.% [185–190] and in some commercial Cr-containing steels, e.g. 

191,192] . The increasing size and decreasing number density of 

he α′ precipitates with dose are consistent with a coarsening be- 

aviour [193] . The increasing number density of α′ precipitate with 

ncreasing Cr content is also consistent with increasing precipita- 

ion driving force with increasing Cr supersaturation [185] . The ob- 

ervations are consistent with α′ formation is accelerated by the 

ncreased point defect concentration and radiation enhanced dif- 

usion (RED). The changes in α′ and matrix compositions and in- 

reased Cr solubility measured for neutron irradiation at higher 

emperature (450 ◦C) are consistent with those measured for ther- 

ally aged alloys at 450–550 ◦C [193] . 

Under heavy ion irradiation, the lack of α′ precipitates was sys- 

ematically noted at high dose rates greater than 10 −3 dpa/s [194–

96] . Tissot et al. [197] , noted that injected interstitials could could 

e suppressing α′ in Fe-Cr systems and managed to observe α′ 
n regions away from the damage peak. At lower dose rates how- 

ver, Cr-rich clusters and α′ precipitates were observed, with mi- 

rostructures strongly dependent on dose rate suggestive of de- 

reasing role of cascade mixing [198] . Fig. 13 illustrates the devel- 

pment of Cr clustering as a function of dose rate for neutron and 

on irradiations performed at 300 ◦C. Using in situ He, Ne, and Kr ir-

adiation with TEM observations, Harrison et al. found decreasing 
′ number density with increasing PKA energy at constant dose 

ate [199] , further corroborating the role of high-energy-density 

ascades and sub-cascade formation leading to spatial and tempo- 

al cascade overlap and therefore increasing solute mixing. Unlike 

eavy ion irradiation at high dose rates, 100 keV He irradiation at 

ose rates between 10 −4 and 10 −3 dpa/s led to precipitation with 

he rate of precipitation increasing with dose rate [199] . Similarly, 

ignificant α′ coarsening was reported during electron irradiation 

or increasing dose [200] . In these two cases, the higher dose rate 

ncreases the Frenkel pair production rate. However, because the 
13 
ecombination rate is not a linear function of dose rate, the overall 

oint defect concentration increases, leading to RED and therefore 

ccelerated α′ precipitation. Recent modelling of the Fe-Cr system 

rovides further support to the role of point defects and cascade 

ixing. Using atomistic kMC, Soisson et al. reproduced the RED 

ffect during low dose rate irradiation [201] , while Ke et al. [202] 

eproduced the effect of RED for neutron and electron irradiation 

nd cascade mixing for high dose rate heavy ion irradiation using 

 phase-field approach. 

These Fe-Cr studies naturally raise the question of microstruc- 

ure stability or microstructural evolution for more complex al- 

oys under irradiation. Similar to the observation that microstruc- 

ural features (voids, dislocation, precipitation) may have their own 

emperature and dose rate dependency [128] , different stable and 

etastable phases within an alloy might have their own depen- 

ence due to different thermodynamic properties, differing point 

efect interactions, competition for point defects, etc. Such be- 

aviour would challenge the use of heavy ions to reproduce neu- 

ron irradiation microstructures. However, understanding ion irra- 

iation provides a unique opportunity to quantify individual phase 

tability. 

While essential to our understanding of the chemical effects, 

he interpretation of APT data can also be subject to a number 

f potential limitations, similarly to the TEM challenges described 

bove. The analysis of small solute clusters can be limited by spa- 

ial resolution and the accurate measurements of cluster compo- 

ition. This issue has led to significant discussions regarding the 

omposition of Cu clusters forming in irradiated low alloyed and 

tainless steels, e.g. [203] , or the composition of nanoscale oxide 

articles in ODS alloys, e.g. [204–206] . Similar effects may be at 

lay regarding the composition of nanoscale α′ precipitates in Fe- 

r alloys. The composition of α′ precipitates depends on a num- 

er of factors that include temperature dependence of the equi- 

ibrium composition, thermodynamic and kinetics factors that can 

ffect the com position in the early times of formation when the 

recipitates are very small, i.e. < 2 nm. In addition, mixing ef- 

ects could result in lower the Cr precipitate composition. Bergner 

t al. [186] compared APT of Fe-Cr with SANS measurements and 

oncluded that the approach to simulating the evaporation field 

n APT is the main source of uncertainty and error. Analyzing all 

he reported APT data on α′ in Fe-Cr alloys, Reese et al. argued 

hat APT artefacts further lower the precipitate composition for 

he smaller precipitates sizes [193] . Conversely, Hatzoglou et al. 

howed that the error introduced by trajectory aberrations is less 

han 5 at.% [207] . This model however does not consider surface 

iffusion and local atomic rearrangement that would further dilute 

he apparent cluster composition [208,209] . Quantifying the spa- 

ial and chemical accuracy and errors in APT data remains a sig- 

ificant topic of research, with recent effort s f ocused on the de- 

elopment of physics-based models to support the interpretation 

f APT data and its use for understanding complex microstructures 

s those observed in irradiated alloys. 

Beyond cluster composition, the number density of clusters is 

n essential quantity to accurately measure in order to develop 

ardening models. The APT community has traditionally used rel- 

tively simple clustering identification algorithms. The so-called 

riend-of-friend algorithm, first introduced to the APT data by Hyde 

t al. [210] involves a set of parameters that define what a cluster 

s: a threshold distance that defines whether 2 atoms are part of 

he same cluster, a minimum cluster size in terms of the num- 

er of atoms within a cluster, and the number of nearest neigh- 

our solute atoms on which the threshold distance is applied. 

his approach works very well for dilute solutes with clear clus- 

ering behaviour. However, its limitations in terms of subjective 

arameter selection and increasing identification errors for com- 

lex microstructures have led to significant results variability and 
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Fig. 13. 2 nm thick atom maps from reconstructed APT volumes obtained after ion and neutron irradiations. Color gradient is associated with local Cr concentration measured 

in 1 nm diameter spheres. Adapted from [198] . 
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Fig. 14. Automated cluster and dislocation loop analysis from APT data. (a) 3D 

reconstruction showing Si atoms only; (b) identification of individual dislocation 

loops and lines; (c) identification of Si rich clusters and decorated dislocation lines. 
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t times erroneous interpretation of the data. The APT community 

as organised round robin experiments to understand and quantify 

he origins of quantification variability, raise awareness around the 

itfalls, and establish standardised analysis and reporting habits 

211,212] . To expand the range of available methods, new algo- 

ithms are also needed and should use the advancements in data 

nalysis methods developed in other scientific fields. 

Following the first use of the DBSCAN algorithm for APT data 

y Stephenson et al. [213] , Ghamarian et al. recently adapted the 

DBSCAN and DeBaCl algorithms to the detection and quantifica- 

ion of solute clusters in APT data [214] . This approach can be ap-

lied to a wider range of microstructures by allowing clusters of 

ifferent density and accounting for variable matrix density. Build- 

ng on these algorithms, Ghamarian et al. also proposed an au- 

omated detection algorithm for dislocation loops that are appar- 

nt in APT data via solute segregation. This approach was recently 

emonstrated for dislocation loops that form in a proton-irradiated 

lloy 625 and are decorated with Si [215] . Until now, such analy- 

is was performed by hand and subject to significant subjectivity. 

ig. 14 illustrates the detection and classification of Si decorated 

eatures into two categories: dislocation loops and Ni 3 Si clusters. 

ollowing the round robin recommendations, it is important to 

mphasise the need for thorough reporting of the analysis meth- 

ds, including details of the algorithm and selection of relevant 

arameters. This information is not only essential for the repro- 

ucibility of the results, but also ensures that the analyzed results 

ith their likely biases can be accurately interpreted by future re- 

earchers and data can be compared with future analyses, thereby 

ptimizing research activities and limiting waste of research re- 

ources. 

.6. Transmutation-induced segregation of Re in W 

A somewhat different picture is offered by the behaviour of Re 

olutes in W. Re forms concentrated solid solutions with W, result- 
14 
ng in commercially available alloys with a significantly improved 

racture toughness [216] . Between 300 and 600 ◦C W-Re exists as 

 bcc solid solution up to Re concentrations of 15–25 at.% [217] , 

fter which the alloy goes through an intermediate precipitation 

egion dominated by the formation of brittle σ and χ intermetal- 

ic phases [217,218] . However, exposure of initially unalloyed W to 

oderate levels of mixed-spectrum neutron irradiation is seen to 

esult in exceedingly high hardening levels, and severe degradation 

f the fracture toughness and the thermal conductivity [219,220] . 

hile inventory calculations have shown that the level of accu- 

ulation of Re in W under ITER-like conditions is approximately 

.1 at.% Re/dpa [221] , independent irradiation tests to doses of less 

han 2.0 dpa conclusively show the formation of elongated Re pre- 

ipitates in W with σ and χ structure [218,219,222] . While seg- 

egation in nominally subsaturated conditions is a common phe- 
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Fig. 15. (a) Composite mechanism of migration of Re by alternate translation- 

rotation-translation steps between the dumbbell and ‘bridge’ configurations. (b) As- 

sociated migration energy landscape. Both rotations and translations display similar 

energy barriers. From [226] . 
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1 In a full tensorial representation, taking into account effects of anisotropic elas- 

ticity and the anisotropy of the structure of defects themselves, the above equation 

acquires the form f i (r ) = −∂ �il (x ) /∂ x l , where the density of elastic dipole tensors 

of defects �il (x ) is defined in terms of dipole tensors of individual defects P (a ) 
il 

as 

�il (x ) = 

∑ 

P (a ) δ(x − R a ) . 
omenon under irradiation, the formation of Re-rich precipitates 

as well as precipitates containing Os and Pt [223] ) has been ob- 

erved to take place homogeneously, not necessarily associated to 

efect sinks [217] . 

Recent models based on alloy cluster expansion Hamiltonians 

tted to DFT results [217,224] and coupled to detailed defect ener- 

etics calculations [225,226] have revealed that a potential mecha- 

ism that can explain the formation of Re-precipitate precursors is 

he immobilization of solute due to mixed-dumbbell migration and 

lustering. DFT calculations have revealed a two-step process by 

hich Re-W dumbbells alternate 〈 111 〉 translations with 〈 110 〉 ro- 

ations in such a way as to remain in the bound dumbbell config- 

ration. In this fashion, Re atoms in the dumbbell are transported 

ffectively along 〈 100 〉 directions [226] . Fig. 15 illustrates the two- 

tep process with the associated energy landscape (this mechanism 

an take place also for other transition metal solutes dissolved in 

). Migration continues until W-Re dumbbells encounter (i) one 

nother, forming immobile di-interstitials (or larger) clusters, or (ii) 

acancies, resulting in a substitutional solute. This mechanism of 

e by way of mixed-dumbbell migration – with W and Re atoms 

eing transported in pairs – is consistent with the formation of 

on-compact Re clusters with Re concentrations approaching the 

toichiometry found in σ and χ phases (20%-50% atomic). An- 

ther important aspect of this mechanism is that interstitial migra- 

ion is rendered three-dimensional, as opposed to primarily one- 

imensional as for pure self-interstitial defects. This is also consis- 

ent with an enhanced recombination and the suppression of the 

welling peak in neutron-irradiated W-Re alloys compared to pure 

 [217] . Note that this mechanism is very similar to the case of 

PV steels under irradiation, where hardening is caused by nano- 

cale solute clusters formed (in OkMC simulations) by the dragging 

f solute atoms by point defects and subsequent clustering at self- 

nterstitial defects [137] . 

The effect of the above mechanism on microstructural evo- 

ution and mechanical property degradation can be captured in 

inetic reaction-diffusion models of the types discussed later in 

ection 4.2 . In these models, Re transmutation is included as a 

alid microstructural transformation resulting from neutron irradi- 

tion. As shown in Fig. 16 , under these conditions, Re precipitates 

re seen to account for the majority of the hardening calculated 

n neutron irradiated W-Re alloys (with three different spectra), in 

greement with experimental measurements. These results support 

he notion that segregation models of defect-solute co-evolution 

ust include transmutation in cases where its impact is crucial 

o predict and understand microstructural evolution under irradia- 

ion, see [217,227] . The impact of transmutant Re in irradiated W 
15 
an also be studied using OkMC methods [172,174,175] , where re- 

ults confirm that small concentrations (from 0.1% [174] ) of Re can 

ignificantly reduce the mobility of SIA defects. 

.7. Macroscopic stress and swelling: From microstructure to 

ontinuum 

New methods have been developed for transferring the infor- 

ation now available from microstructural evolution simulations 

ack to making real-life engineering predictions about material 

welling due to irradiation [229,230] . Fundamentally, swelling is a 

roperty measurable with calipers - indeed, it is just a measure 

f the changing dimensions of a reactor component, but there are 

hree possible origins to a dimensional change. The first is self- 

nterstitial defect transport from the material interior to the sur- 

ace or grain boundaries. This leaves voids behind in the bulk, and 

urface steps or altered atomic arrangements in the grain bound- 

ry regions. The second is an effective change in lattice param- 

ter produced by the homogeneous strain induced in a compo- 

ent with free surfaces due to the presence of defects in the bulk. 

he third one is the growth and coalescence of spatially homo- 

eneously distributed self-interstitial dislocation loops, resulting in 

he formation of a grain-spanning dislocation network and new 

omplete crystallographic planes, and giving rise to the overall ex- 

ansion of the material [46] . This latter mechanism incorporates 

elf-interstitial atom defects in the perfect crystal lattice, effec- 

ively removing them as ‘lattice defects’, and generating a high 

esidual concentration of vacancies, leaving them free to diffuse 

nd coalesce into voids. 

Historically only the first case, transport of material, and par- 

ially the third one, the formation of new atomic planes by dis- 

ocation climb, were considered in detail [25,231–234] . This ap- 

roach is correct in the limit where all the microstructural features 

resent are large. In this limit the relaxation volume per vacancy 

f a large void is zero, and the relaxation volume per interstitial of 

 dislocation loop is one atomic volume [39] . Therefore it is im- 

aterial whether a large interstitial loop is trapped in the interior 

r at the surface, the total change of volume of the component 

an be found by a simple count of the number of vacancies in 

ll the voids, which matches the total number of self-interstitials 

ontained in large dislocation loops or in steps and atomic islands 

ormed at the surface. 

But in the limit where defects are small compared to a cho- 

en scale of microstructure, defects dominate internal stresses and 

trains, and the treatment of swelling is far less obvious. This has 

nly recently been elucidated in Ref [54] . In the limit where defects 

an be homogenised and treated as a field representing a contin- 

ously distributed density of relaxation volumes, it is possible to 

ompute the resulting effects using concepts from solid mechanics. 

or example, the effective internal body force acting on a volume 

f a finite element, f (r ) , can be written as a simple gradient of the

ocal relaxation volume density of defects, ω rel (r ) , accumulated in 

he microstructure at a given location, i.e. 

 (r ) = −B ∇ω rel (r ) , (7) 

here B is the bulk modulus of the material. 1 Using this equation, 

otal strains, stresses and swelling of arbitrarily complex compo- 

ents in a reactor can be computed given the internal microstruc- 

ure [54] . Furthermore, since the scale of a reactor component is 
a il 
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Fig. 16. Computed irradiation hardening levels obtained using a mean-field cluster dynamics approach due to the formation of SIA loops, voids, and Re precipitates in 

neutron irradiated W with Re transmutation. Results for (a) fusion, (b) mixed, and (c) fast neutron spectra are shown for comparison. From [228] . 

Fig. 17. Left: stress isosurfaces induced by a typical 150 keV cascade in tungsten [33] . Vacancies (blue spheres) and interstitials (red spheres) are identified by a Wigner-Seitz 

cell analysis and isosurfaces of stress are indicated (yellow- trace of dipole tensor = +0.1eV, blue- trace of dipole tensor = -0.01eV). Right: Radial stress computed using 

the finite element method for a spherical model reactor pressure vessel with the cap of the sphere shielded [54] . These two calculations are linked together by the simple 

formula, equation (7) , relating internal body forces to the density of relaxation volumes of defects in the microstructure of irradiated material. Figure reproduced from 

Ref [54] . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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acroscopic, even gigantic defect structures forming under irradi- 

tion can be treated as microscopic, and hence the above equation 

as a very broad range of validity if viewed from the macroscopic 

erspective. Figure 17 illustrates the use of Equation 7 in finite el- 

ment modelling: stresses computed in primary damage cascades 

enerate a relaxation volume density, ω rel ( r ), which is then used 

o predict radial stress and deformation in a spherical pressure 

essel. 

To parameterize equation (7) , a comprehensive survey the re- 

axation volumes of point defects in bcc and fcc metals, com- 

uted using Density Functional Theory, has been published re- 

ently [22,23] . Relaxation volumes of clusters of defects and dis- 

ocation loops in tungsten, spanning the entire range of sizes of 

efect clusters, were explored in Ref. [39] . These studies show that 

he relaxation volume per an interstitial defect can be significantly 

reater than one atomic volume, 1 . 7�0 in Fe and W, and the value

nly slowly decreases to 1�0 in the limit where defects form large 

islocation loops containing hundreds or even thousands of inter- 

titial point defects. The corresponding relaxation volume per va- 

ancy is approximately −0 . 2�0 (Fe) or −0 . 3�0 (W), and the re- 

axation volume per vacancy gradually vanishes in the limit where 

acancies agglomerate in large voids [39] . On the other hand, va- 

ancies forming dislocation loops exhibit a large negative relaxation 

olume, approaching minus one atomic volume per vacancy, −1�0 . 

ence, vacancy dislocation loops give rise to the much larger de- 

ree of elastic contraction of the material than quenched-in in- 

ividual vacancies [26] . The above values show that there is ef- 
16 
ectively instantaneous volumetric swelling occurring in irradiated 

omponents due to the accumulation of the primary damage cas- 

ade, which gradually evolves as defects interact and recombine, 

nd new defects form as a result of continuing exposure to irradia- 

ion. At low temperatures, where mobility of defects is suppressed, 

he density of defects and volumetric swelling gradually saturates 

s a function of dose [46] . 

. Microstructure to properties 

This section reviews the recent effort s to take the final step in 

he multiscale framework – using the simulations, modelling and 

xperimental analysis to make predictions about the change in ma- 

erial properties in the fusion environment. After describing the 

hallenges that need to be solved below, we discuss ( Section 4.2 ) 

he advanced simulation techniques being developed to overcome 

he limitations of the traditional techniques (MD, DFT, kMC, etc.). 

hese include a kMC method applied in the semigrand canoni- 

al ensemble to study He segregation in irradiated W, the use of 

daptive kMC (4.2.1) to study complex problems where transition 

tates are not known in advance, and continuum methods such 

s stochastic cluster dynamics (4.2.2) . After discussing the ongoing 

hallenges of developing multiscale frameworks ( Section 4.2.3 ), as 

xemplified by the modelling needs of a new generation of smart 

lloys, we discuss examples of new experimental characterisation 

echniques that are suitable for validating the predictions coming 

rom the multiscale approaches ( Section 4.3 ). 
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.1. The fusion challenge 

Exposure of first wall materials to fusion plasmas and their en- 

uing property degradation has long been recognised as one of 

he most important challenges facing fusion energy [235–238] . The 

urrent ITER plan calls for a divertor design consisting of support 

tructures (monoblocks) with plasma-facing components made out 

f W to withstand heat loads of 10–20 MW m 

−2 [239] . The be-

aviour of W-based components under such extreme conditions 

as been reported to involve surface erosion/exfoliation [240,241] , 

nd the formation of quasi-porous, filamentous structures widely 

eferred to as nanofuzz under high flux, high fluence plasma con- 

itions [242–245] . While the near plasma edge and material sur- 

ace evolution have attracted and continue to attract a consider- 

ble amount of interest under the umbrella of plasma-materials 

nterface (PMI) and plasma-facing materials (PFM) research pro- 

rams, the bulk response of reactor structures, such as structural 

nd blanket materials, to fusion energy conditions has received 

omparatively less attention. Defect formation within the bulk mi- 

rostructure has often been explored independently of the PMI us- 

ng a combination of neutron and ion irradiation techniques with a 

ocus on the formation of dislocation loops, voids, and precipitates 

resulting both from radiation induced segregation and transmu- 

ation) [ 219,223,246,247,249,250 ]. However, the coupling of near- 

urface phenomena with bulk microstructure evolution and its im- 

lications for the thermomechanical response of structural and 

lanket materials have received considerably less attention, but are 

ritical from both design and engineering viewpoints (see, eg. [3] ). 

Knowledge of defect distributions with high temporal and spa- 

ial resolution is required to link to meso and macroscopic level 

ormulations of property degradation to inform reactor design 

nd/or operation. For example, the accumulation of plasma ion 

lusters in the subsurface region of the divertor and its interaction 

ith neutron damage and transmutation atoms in the bulk creates 

ontrivial concentration gradients that can lead to the internal ac- 

umulation of complex species and defects. The effect of this accu- 

ulation on component performance, e.g. via irradiation harden- 

ng, swelling, loss of thermal conductivity, etc., is of critical impor- 

ance for fusion materials development. Owing to certain intrinsic 

imitations, experiments can only provide incomplete or indirect 

nformation about processes occurring in the subsurface region. 

n principle, however, these processes are amenable to large-scale 

odelling and simulation building on atomistic information from 

FT or MD, provided that several difficulties are addressed in algo- 

ithm development, model scale-up, and computational efficiency. 

ome essential features of models designed to predict and quan- 

ify material property degradation in the surface-to-whole-device 

ransitional regions are (i) full spatio-temporal resolution, (ii) abil- 

ty to connect atomistic scale behaviour with mesoscopic response 

odels, (iii) ability to consider multiple chemical species simulta- 

eously, and (iv) a capability to take into account spatial fluctua- 

ions. State-of-the-art computational methods to study fusion ma- 

erials degradation lack many of these features at present. 

.2. Advanced & hybrid simulation techniques 

Limitations in direct atomistic methods such as DFT or MD, 

here time and length scale constraints restrict deposition fluxes 

o several orders of magnitude higher than real device fluxes [251–

54] , are being addressed through the development of hybrid 

imulation techniques. Accelerated MD methods, such as parallel 

eplica dynamics [255] , hyperdynamics [256] or temperature accel- 

rated dynamics [257] , help in the time scale, but still fail to reach

xperimental times because of the high computational resources 

eeded to track events with high rates (i.e. low energy barriers). 

arallel replica dynamics is also limited in the way that structural 
17 
ransitions are detected and the parallel replicas, etc. are updated. 

ewer techniques, such as adaptive kMC, help overcome these bar- 

iers by searching for events and developing the list of possible 

ransitions on-the-fly [258–260] . 

Other hybrid Monte Carlo (MC) methods can be applied to 

chieve representative microstructures in the presence of impuri- 

ies or alloying elements in a material and explore how the mi- 

rostructure evolves as they segregate to sinks (grain boundaries, 

nterfaces, or dislocations). These methods are based on statistical 

echanical descriptions of the system to sample probable config- 

rations identified using the Metropolis algorithm in the canoni- 

al ensemble. Semigrand-Canonical algorithms have also been de- 

eloped where particles are exchanged with a reservoir at a pre- 

cribed chemical potential. However, these methods cannot be ap- 

lied in regions of the phase diagram where different phases have 

qual chemical potentials (i.e., miscibility gaps), as is the case to 

tudy He in metals, since its solubility is negligible. To address 

his limitation, the Variance-Constrained Semigrand-Canonical al- 

orithm [261] was developed, which introduces an extra constraint 

n the statistical mechanical derivation of the probability func- 

ion to extend to alloys inside the miscibility gap. This algorithm 

as been used to understand He segregation to different grain 

oundaries in W [262] . Six different bicrystals with different mis- 

rientations were studied and, in all cases, He was observed to 

egregate to the grain boundaries and form bubbles, as shown in 

ig. 18 . The presence of He significantly modified the mechani- 

al response of the material [263–265] , promoting decohesion in 

 manner that depends on the atomic details of the interface and 

he bubble pressure. It also augmented the response of the mate- 

ial under shear stress, in this case increasing the yield strength 

see Fig. 18 c). 

.2.1. Adaptive kMC 

kMC methodologies instead coarse-grain the atomic vibrations 

nd rely on different levels of approximation to compute the rates 

or all possible events occurring in the system. Provided that all 

ransitions and their rates are known (or at least pre-specified), 

MC can push the time and length scale envelope of direct atom- 

stic simulation, but is still limited in capturing surface morpholog- 

cal evolution [119,266,267] . Additionally, considering the atomistic 

etails of microstructural features in materials including grain and 

hase boundaries is cumbersome. AkMC [258,268] methods dy- 

amically compute possible events and in principle can find tran- 

itions in the presence of grain boundaries; however, the rough 

otential energy landscape reduces the ability of this method to 

each the required timescale. OkMC [120] models further coarse- 

rain the atomic positions and follow the evolution of bjects of 

nterest, such as irradiation-induced defects and impurities, but 

ose the atomistic details of the interfaces through the coarse-grain 

omogenization of the landscape. This is a serious limitation for 

apturing property evolution due to irradiation, which often in- 

olves processes where small clusters of atoms interact with mi- 

rostructural features (also discussed in [3] ). A method to map ho- 

ogenised configurations back into full atomistic structures will 

pen the possibility of understanding the effect of irradiation- 

nduced damage on the basic mechanisms of materials under stress 

nd thus be extremely valuable for the radiation damage commu- 

ity. 

.2.2. Continuum methods 

For their part, continuum methods such as mean field rate the- 

ry (MFRT) can be implemented on regular or irregular spatial 

rids to solve spatially-dependent problems [269] . However, they 

ail to capture essential fine-scale features of the involved pro- 

esses and, in the current, most-advanced implementations, they 

an only deal with a limited number of distinct mobile chemical 
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Fig. 18. He segregation to a) {110} twist and b) �45 interfaces. W and He atoms are shown in gray and orange, respectively. c) Yield stress upon normal loading depending 

on interface misorientation and He content. d) Stress-strain response of the system containing a {110} twist interface upon shear depending on He content. 
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pecies (e.g. point defects and He [270] , point defects and H [271] ,

r Cu monomers and clusters [272] ), making them insufficient to 

apture the complex chemistry expected in fusion environments. 

he stochastic cluster dynamics method (SCD) is a stochastic vari- 

nt of the MFRT technique that eliminates the need to solve ex- 

eedingly large sets of ordinary differential equations (ODEs) and 

elies instead on sparse stochastic sampling of the underlying ki- 

etic master equation [121] . Rather than dealing with continuously 

arying defect concentrations in an infinite volume, SCD evolves 

n integer-valued defect population in a finite material volume, 

hus avoiding combinatorial explosion in the number of ODEs. This 

akes SCD ideal to treat problems where the dimensionality of the 

luster size space is high, e.g., when multispecies simulations for 

xample involving energetic particles, He, H, etc., simultaneously 

re of interest. In practice, SCD sits at the intersection between 

FRT and kMC, and can thus take advantage of the mean-field ap- 

roximation for computational expediency while avoiding combi- 

atorial explosion and allowing for statistical fluctuations. SCD has 

een applied successfully to fusion irradiation problems involving 

ultispecies clusters [121,273] . 

There are other interesting methods that have been employed 

n materials simulations that could be adopted for fusion ma- 

erials modelling. For example, the family of so-called quasi- 

ontinuum methods is predicated on the combination of highly- 

ccurate atomistic descriptions of the environment around defects 

ith computationally-efficient linear elastic descriptions of the sur- 

ounding volume, all in a seamless fashion, without the presence 

f numerical artifacts [274] . The quasi-continuum method takes 

dvantage of the local nature of nonlinear stress fields around de- 

ects while describing unstressed or smoothly-stressed regions of 

he crystal using mean-field treatments. This has proven to be an 

ffective com putational strategy to concurrently simulate large sys- 

ems containing an arbitrary number of heterogeneities. However, 

hile these methods hold substantial potential, and have been 

uccessfully applied in a number of materials deformation pro- 

esses [275,276] , considerable challenges still remain unresolved, 

he most pressing of which being how to accurately avoid spuri- 

a

18 
us reflections of elastic waves in unstructured meshes in dynamic 

imulations [277] . 

.2.3. A multiscale future? 

Combining the aforementioned modelling approaches in a mul- 

iscale framework to bridge surface phenomena to bulk microstruc- 

ural effects in materials for DEMO introduces additional chal- 

enges related to their increased chemical and microstructural 

omplexity. For example, the limitations of W as a PFM includ- 

ng its recrystallization temperature [278] ( ∼1300 ◦C), oxidation 

esistance [279] , radiation tolerance [280] , and mechanical per- 

ormance [281] have motivated the development of advanced W 

ased alloys [281–284] . A synergistic alloy design strategy that 

ombines nanostructuring with targeted doping of grain bound- 

ries has been pursued to improve the thermal stability and ra- 

iation tolerance of W relative to its pure, coarse-grained counter- 

art [285,286] . Lattice based MC (LMC) techniques [287] , which re- 

eal the lowest free energy state of an alloy from a configurational 

pace incorporating chemical mixing with grain boundary ener- 

etics, have played an important role in mapping dopant species 

nd concentrations for the design of solute-stabilized nanostruc- 

ured W alloys. As shown in Fig. 19 a, Ti has a thermodynamic 

reference to segregate to grain boundaries while Cr clusters to 

orm nanoprecipitates. Guided by modelling, nanocrystalline W-Ti- 

r powders ( ≥ 80 at.% W) have been produced via powder metal- 

urgy synthesis (nanostructure depicted in the bright-field image in 

ig. 19 b) and consolidated to form bulk nanostructured W alloys as 

hown in Fig. 19 c. Modelling the behaviour of these materials un- 

er coupled extremes, specifically quantifying defect production in 

ascades, gas behaviour, and their implications for microstructural 

volution, requires W-alloy potentials to complement the more es- 

ablished W-He and W-He-H interatomic potentials [252,254,288] . 

Mesoscale phase-field approaches could also be a useful tool in 

redicting microstructure evolution and property degradation in ir- 

adiated materials, especially in materials where initial grain mor- 

hology, different phases and interfaces impacts radiation defect 

ccumulation and material properties [289] . This is particularly so 
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Fig. 19. (a) LMC model for a nanostructured W-Ti-Cr alloy with W-rich grains shown in grey-scale, Ti atoms in red, and Cr atoms yellow. (b) Bright-field TEM micrograph 

of a binary W-Ti alloy revealing a nanocrystalline grain structure. (c) Sintering curves for the consolidation of a nanoengineered W alloy relative to pure W demonstrating 

a considerable reduction in the sintering temperature. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 20. a) Mass reduction due to sublimation as a function of exposure time for 

W-Cr-Y smart alloy (curve A), fully oxidized W thin film (curve B), oxidized bulk W 

sample (curve C) and for oxidized pure Cr film (curve D) in humid air at 10 0 0 ◦C. b) 

APT analysis of post-oxidation W-Cr-Y alloy, showing clusters of Y and W oxide. 
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hen radiation-induced microstructure evolution means the sys- 

em never reaches steady state, or there is a high volume fraction 

f evolving phases at high doses. There are, however, still many 

rand challenges ahead to make quantitative simulations. Among 

hese challenges are how to correctly capture the length scale of 

icrostructures; the thermodynamic and kinetic properties of de- 

ects; how to use high performance computers to perform the 

arge-scale modelling; and how to integrate machine learning to 

fficiently solve the evolution equations. 

The operation of a fusion power plant will inevitably present 

ew challenges that fall beyond the capabilities of our existing 

nd envisioned modelling frameworks. For example, the behaviour 

f W based PFCs under accident scenarios introduces the need 

or predictive models describing oxidation. Indeed, self-passivating, 

mart W alloys are under development with an aim to mini- 

ize radioactive hazards by suppressing W oxidation and sub- 

imation at high temperatures [290–292] . In the case of a loss- 

f-coolant-accident (LOCA) where the temperature of the W first 

all cladding may reach 10 0 0 ◦C and above due to nuclear decay

eat [293] , neutron-activated W and its isotopes will form volatile 

xides upon air ingress, which can be mobilized to the environ- 

ent at the rate of ∼150 kg h 

−1 at 1450K [294] . Under such condi-

ions, alloying elements will form their own dense oxide layer pro- 

ecting W from oxidation and subsequent sublimation of W oxide. 

resent smart W alloy systems contain Cr as a passivating element 

nd Y as a so-called active element [295] . Bulk alloys have been 

ealized through powder metallurgical routes with a 10 5 -fold re- 

uction in the oxidation rate relative to that of pure W with com- 

lementary studies of accident conditions and plasma performance 

t the timescale corresponding to a lifetime of a first wall PFC 

n DEMO [296,297] . Direct measurements of W sublimation from 

 smart alloy exhibited more than a 40-fold reduction relative to 

ure W as shown in Fig. 20 while preserving its geometrical shape 

hrough testing. 

The modelling needs in the aforementioned alloys are centered 

n the impact of alloying elements for material behaviour under 

egular plasma operation and accident conditions. Specific phe- 

omena critical to understanding the response of advanced al- 

oys for a fusion reactor include: (i) quantifying solute distribution 

mong different microstructural features and its impact on ther- 

omechanical properties, (ii) diffusive transport of bulk alloying 

lements toward the surface and potential biasing of fundamental 

rocesses at the PMI (e.g., selective sputtering, He and H retention, 

tc.), (iii) bulk damage evolution as a result of neutron irradiation 

nd its interaction with surface damage, and (iv) the implication 
c

19 
f these complex, intertwined processes on the evolution of ther- 

omechanical properties and oxidation resistance. Using ab ini- 

io calculations, progress has been made in understanding the be- 

aviour of Y at grain boundaries in W-Cr-Y alloys: segregation of Y- 

ontaining nanoclusters to the grain boundaries of the W-Cr solid 

olution was predicted and subsequently observed experimentally 

sing atom probe tomography (APT) as shown in Fig. 20 b. How- 

ver, as noted above with the W-Ti-Cr alloys, the limited availabil- 

ty of interatomic potentials for alloy systems of interest severely 

inders steps toward multiscale models for advanced fusion mate- 

ials. 

.3. Validation from experiment 

As multiscale modelling techniques continue to advance to ad- 

ress critical knowledge gaps linking microstructure to thermo- 

echanical properties, new opportunities for accelerating model 

alidation are being realized through advanced characterization 

echniques. X-ray techniques available at advanced synchrotron 

ight sources offer ultra-high brightness relative to standard lab- 

ratory sources, and in turn provide rapid measurements fa- 

ilitating both high-throughput and in situ experiments [298–

00] . When leveraged in a multi-modal fashion with conven- 

ional characterization methods (e.g., TEM [132,146,167,199,301–

03] , PAS [304,305] , APT [185,186,188,194,203,213,306,307] , and 

ANS [ 186,192,204,308 ]), these techniques provide a fundamen- 

al understanding of key parameters that lead to microstructural 

hanges and thermomechanical performance degradation. Such ap- 
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Fig. 21. (a) XRD patterns for RAFM alloys Eurofer97 and CNA2. Phases overlaid for reference. (b) Phase fractions predicted from computational thermodynamics for Eurofer97 

and CNA alloys shown in (a) (reproduced from [300] ). Images courtesy of D.J. Sprouster, Stony Brook University. 
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roaches also facilitate direct validation of mechanistic models for 

aterial performance through unprecedented access to realistic 

orphology and microstructural information [310–312] . For exam- 

le, synchrotron x-ray diffraction (XRD) and small angle x-ray scat- 

ering (SAXS) experiments were employed in the quantification of 

X and M 23 C 6 precipitate fractions in castable nanostructured al- 

oys (CNAs), which represent a special class of reduced activation 

erritic-martensitic (RAFM) steels. Combined with atomic informa- 

ion in both the host matrix and these minor phases, computa- 

ional thermodynamics predictions originally used in designing the 

NAs [313] were validated, as summarized here in Fig. 21 . 

Laser based material property measurements also have the po- 

ential to further reduce the temporal gap in the generation of 

xperimental data for verification of computational models. Most 

echniques begin with the same initiating mechanism: the trans- 

ission of heat into a material of interest. This can be a simple 

aussian pulse for techniques like laser flash [314] or time-domain 

hermal reflectance (TDTR) [315] , both of which measure thermal 

iffusivity, to creating a spatially periodic pattern, such as in tran- 

ient grating spectroscopy (TGS) [316] , to the rapid imposition of a 

arge amount of energy resulting in a shock wave [317] . Then, the 

ropagation of this energy in the form of heat diffusion, acoustic 

ave generation, or wave scattering can reveal desired information 

bout a material’s properties and how they change under imposed 

timuli. 

In some cases, the properties measured (thermal diffusivity, 

ayleigh wave velocity, stiffness, acoustic damping) may be the 

aterial properties of ultimate interest. For example, studying the 

egradation in thermal diffusivity of W under combined plasma 

mpingement and light ion irradiation is poised to reveal informa- 

ion on the underlying mechanisms. Monitoring thermal diffusivity 

egradation will be particularly important in developing radiation- 

obust materials for divertors [318–320] . In other cases, an indi- 

ect measure of one or more material properties correlated to the 

ne(s) of ultimate interest can yield rapid insights into the kinetics 

f the changes to materials, allowing for more targeted identifi- 

ation of exposure conditions for more time-consuming, destruc- 

ive analyses. Examples include monitoring Rayleigh wave speed 

o detect the onset of radiation void swelling [321] (also appli- 

able to validating theoretical modelling of void swelling – see 

ection 3.7 ), revealing corrosion kinetics via transmission-mode 

GS compressibility measurements [322] , and identifying the onset 

f W nanofuzz [245] via a reduction in effective thermal diffusivity. 

t

20 
hus, the growing need to validate multiscale models by building 

 mechanistic understanding of material property evolution during 

he application of external stimuli will continue to drive the im- 

lementation of ultra-rapid direct and indirect advanced character- 

zation methods in fusion materials R&D. 

. Gas behaviour in solids 

This final section discusses modelling of a unique material chal- 

enge for fusion: that of neutron-induced gas production and evo- 

ution. Section 5.1 reviews the current understanding and out- 

tanding questions for He and H-induced bubble formation. The 

emainder of the section is devoted to tritium: the behavioural 

nderstanding obtained from the real world experience in fission 

5.2) , and the latest simulation approaches to understand fuel re- 

ention in fusion plasma-facing materials ( Section 5.3 ). 

The extremely harsh fusion environment, characterised by a 

ombination of high temperature, high thermal flux, and intensive 

ux of gaseous species (i.e., D, T, He) and neutrons, imposes sig- 

ificant challenges to plasma facing and structural materials in fu- 

ion reactors. Fundamental understanding of gas behaviour in fu- 

ion materials is needed to accurately predict the long-term per- 

ormance of materials when in service. Of particular importance is 

he impact of the synergism of radiation damage, He and H iso- 

opes on gas behaviour in fusion materials, which encompass both 

tructural materials subject to high fluxes of 14 MeV neutrons, the 

reeding blanket that will generate significant quantities of tritium, 

nd the plasma facing components which will experience injection 

f high fluxes of H isotopes and tritium. As well, the behaviour of 

 isotopes, and to a lesser extent He, is critically important in fis- 

ion cladding and tritium production for national security needs. 

he behaviour of H in Zr-alloys will not be discussed here, but the 

nterested reader is referred to an excellent recent review article 

y Motta and co-workers [323] . 

.1. Bubble formation 

The role of H in the nucleation and growth of He bubbles into 

avities remains largely unanswered and poorly understood since 

he existing data are both sparse and conflicting. Yet the role of 

 and He in bubble nucleation and growth is critical to assessing 

erformance of candidate ferritic alloys in a fusion blanket envi- 

onment. Key questions to answer are the following. First, how and 

o what extent does the generation of H simultaneously with He 
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ffect the nucleation and growth of cavities? Second, what is the 

echanism by which H affects the nucleation and growth of cavi- 

ies? H has been variously purported to stabilise small He bubbles, 

nhance cavity growth beyond the nucleation stage, alter the sur- 

ace energy of the bubbles/cavities, and change the critical bubble 

ize at which a bubble transitions to bias driven cavity growth. Fi- 

ally, and of equal importance, is whether there is an interaction 

etween H and other defect/solute clusters in the alloy. 

The starting dislocation microstructure and precipitate distribu- 

ion and their evolution under irradiation are sites for interaction 

ith H that could affect its efficacy in altering cavity evolution. 

he experiments conducted to date have established that the ex- 

sting body of data is too sparse and lacking the systematic rigor 

equired to answer these questions, and in fact there is conflict- 

ng data in the literature as to whether H enhances or reduces 

welling in ferritic martensitic steels [324,325] . While there seems 

o be substantial evidence that H plays a role, it is neither qualita- 

ively nor quantitatively established. There are a number of mech- 

nisms by which H could interact with bubbles and small defect 

lusters containing He and vacancies, including the possibility that 

 is stored within bubbles or cavities in the form of H 2 gas or that

 is trapped at the bubble interfaces as a result of the stress field

ssociated with the interface. H may stabilise the small defect clus- 

ers, but with a relatively low binding energy, such that the impact 

f H on cavity nucleation would be greater at low temperatures 

elative to high temperatures. 

Notably, there is data to support the idea that H is stored 

ithin bubbles in molecular form, as observed by Garner and co- 

orkers [326] in austenitic steels irradiated in fission reactors, in 

hich the H is at much higher concentrations in the bubble or 

oids than He. As well, there are numerous indications that atomic 

 that is trapped at the interface of high pressure He bubbles, as 

as identified in work on He implanted bcc Fe by Meyers and 

o-workers [327] and in the nickel base alloy X-750 irradiated in 

ANDU reactors with very large He production by Judge and co- 

orkers [328] . The experimental assessments indicating the seg- 

egation and trapping of atomic H at high pressure He bubbles is 

onsistent with atomic-scale modelling using MD [329] and DFT 

alculations in both bcc Fe [330] and W [331] . The modelling pre- 

icts that the segregation and trapping of atomic H to the inter- 

ace of noble gas bubbles is relatively insensitive to gas densities 

f over-pressurized bubbles. A strong interaction between H and 

e bubbles in bcc Fe and W leading to segregation and trapping of 

 appears to be a robust conclusion, although future work remains 

o fully quantify the H trapping energies as a function of He den- 

ity (pressure) in the bubbles. There is also a need to understand 

he extent to which the trapping interactions involve either atomic 

 at the bubble-matrix interface or instead molecular H within the 

ubble or void – both of which are likely to be influenced by gas 

ressure. 

Various experimental techniques are available to study these 

ynergistic interactions between H and He in steels and W. There 

re advantages and disadvantages involved with using multiple 

on beams to simultaneously introduce displacement damage while 

mplanting gas species. The use of multiple ion beams does provide 

or the potential to carefully and systematically perform experi- 

ental investigations with proper care taken for the beam dosime- 

ry, sample temperature and avoiding carbon or other beam con- 

amination concerns [332] . In addition to the use of transmission 

lectron microscopy and thermal desorption spectroscopy, laser 

ased ablation techniques have been developed to destructively 

uantify the depth dependence of H and He in W [333] , and there

s also the non-destructive use of neutron depth profiling to assess 

he spatial dependence of He-3. There are also various techniques 

f gas driven permeation that can be used to assess H isotope per- 

eation in both ferritic martensitic steels and W. Again, however, 
21 
he experimental understanding of He-H interaction synergies in 

usion materials is incomplete, and much more work is required in 

he future. 

There is a strong trapping interaction of GBs for He in bcc Fe 

nd W, respectively, and GB He bubbles can influence the tensile 

ehaviour of Fe [334] and W [335] ; both small and highly pres- 

urized He-vacancy clusters reduce the GB strength and fracture 

train [262,336] . In particular, upon tension, the presence of He 

ignificantly decreases the yield stress, which depends consider- 

bly on the bubble pressure. Increasing pressure reduces cohesion, 

s expected. More complex stress states result in more convoluted 

ehaviour, with He hindering GB sliding upon simple shear [262] . 

he topic of GB He bubble formation is an area ripe for additional 

esearch, both in terms of predictably assessing the bubble den- 

ity and pressure at GB as a function of irradiation conditions, but 

lso to evaluate the impact on both low and high temperature (e.g., 

reep) deformation and fracture behaviour. For example, machine 

earning has enormous potential to help in computational mod- 

lling framework needed to understand helium segregation GBs, 

erhaps following the methodology recently developed to under- 

tand segregation of Al to GBs in Mg using neural network regres- 

ion [337] . 

.2. Tritium production 

An important topic in gas behaviour research concerns the ex- 

erience with national tritium production in support of US na- 

ional security, called the Tritium Modernization Program, which 

oncerns the use of a commercial reactor to produce tritium via 

he irradiation of components known as Tritium-producing Burn- 

ble Absorber Rods (TPBAR). Development of fundamental scien- 

ific understanding of TPBAR materials irradiation performance re- 

uced the technical and programmatic risk. Key findings from the 

undamental studies clearly indicate the importance of the H par- 

ial pressure on the tritium pressure through the SS-316 cladding, 

nd that the hydride phases observed to form in the Zircaloy-4 

etter that absorbs the tritium may include γ -ZrH, a transition 

hase between α-Zr and δ-ZrH 1 . 66 . The γ -phase has been observed 

o form in rapidly loaded getters in ex-reactor settings [338,339] . 

ork is ongoing to determine if the γ -phase also forms at reac- 

or temperatures in getters loaded slowly over ∼18-month reac- 

or cycles. Additionally, results from in-reactor permeation exper- 

ments clearly identify a 3–5 times enhancement of tritium per- 

eation through 316 stainless steel in-reactor as compared to ex- 

eactor testing. This tritium permeation occurs with the expected 

quare root pressure dependence. Although the precise mechanis- 

ic cause for the enhanced permeation is not yet well established, 

t may relate to complex interactions between H and irradiation 

nduced interstitial defects [340,341] . While significant work re- 

ains to understand H interactions with radiation induced defects 

cross a range of nuclear materials, new experimental techniques 

nd improving computational modelling capability continue to ad- 

ress the issues. 

As an example, LiAlO 2 pellets used for tritium production in the 

ritium Modernization Program exhibit remarkable dimensional 

nd structural stability during irradiation, even to relatively high 

urnup ( ∼12% total Li) [342,343] . Characterization of irradiated 

ellets coupled with computational modelling reveal that the ra- 

iation damage is isolated to the interior of the grains, resulting 

rom the tendency of Li to migrate to the grain boundaries (GBs) 

n the radiation-damaged lattice while Al and O are relatively im- 

obile. Consequently, the pellets have dense LiAlO 2 regions adja- 

ent to the GBs with Li-poor LiAl 5 O 8 precipitates and porosity in 

he grain interiors, forming a stable microstructure capable of ac- 

ommodating significant radiation damage without deleterious di- 

ensional changes. 
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Fig. 22. Results of spatially-resolved SCD simulations of H exposure and trapping 

of 3.4-MeV Cu ion implanted W. The top image compares the calculated and exper- 

imental thermal desorption spectra, while the bottom one is a cartoon with the in- 

terpretation of the different cluster species participating in the release peaks. From 

[344] . 
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.3. Simulations of hydrogen retention in damaged W 

Fuel retention in plasma facing W components is a critical phe- 

omenon affecting the mechanical integrity and radiological safety 

f fusion reactors. It is known that H can become trapped in small 

efect clusters, internal surfaces, dislocations, and/or impurities, 

nd so it is common practice to seed W subsurfaces with irradia- 

ion defects in an attempt to precondition the system to absorb H. 

he amount of H can later be tallied by performing careful thermal 

esorption tests where released temperature peaks are mapped to 

pecific binding energies of H to defect clusters and/or microstruc- 

ural features of the material. While this provides useful informa- 

ion about the potential trapping processes, modelling can play an 

mportant role in elucidating the detailed microscopic mechanisms 

hat lead to H retention in damaged W. During H exposure tests, 

ne can study H absorption in materials (i) in the as-received con- 

ition, (ii) pre-irradiated with heavy ions, (iii) pre-implanted with 

e ions, or (iv) under concurrent irradiation/implantation and H 

xposure conditions. These scenarios can be captured using kinetic 

odels of H penetration and trapping with spatial resolution [344] . 

 crucial requirement of these models is that they be parame- 

erised using detailed DFT calculations of H-vacancy cluster ener- 

etics [345,346] . This enables models to directly identify the domi- 

ant defect clusters responsible for H trapping in each temperature 

ange. 

In a recent study [344] , spatially-resolved SCD simulations have 

een instrumental in interpreting H thermal desorption spectra 

f pre-damaged W specimens. As Fig. 22 shows, the emission 

pectra are characterised by distinct regions: (i) a low tempera- 
22 
ure regime where dislocations and GBs are the main contribu- 

ors to the release peaks; (ii) an intermediate regime governed 

y H release from small overpressurized clusters with multiple 

verlapping peaks, and (iii) a high temperature regime defined by 

lean isolated emission peaks from large underpressurized bub- 

les. These three temperature intervals are seen to largely corre- 

ate with the depth at which the clusters are found. A key finding 

f these simulations is the pivotal role played by the super abun- 

ant vacancy mechanism, which is fundamentally analogous to the 

trap-mutation’ mechanism in He-implanted materials [347,348] . 

his mechanism allows H-vacancy clusters to grow ‘on demand’ 

y emitting a self-interstitial atom and increasing their capacity to 

urther absorb H atoms. 

. Summary and outlook 

A fusion materials workshop arranged under the auspices of 

he IEA was held in June 2019. Twenty-eight leading researchers 

rom the US, Europe and Japan discussed the current state of the 

rt and ongoing challenges in the multiscale modelling of mate- 

ials for nuclear fusion applications, as well as highlighting the 

atest advances in experimental characterisation techniques, which 

re helping to provide improved data to modelling. This paper has 

eviewed the key topical areas discussed, including modelling of 

rradiation-induced defect production at the atomic scale, larger 

ength and timescale modelling of defect evolution and interac- 

ions, the importance of gas behaviour in irradiated materials, and 

ow to predict and interpret material behaviour based on multi- 

cale modelling approaches. 

Atomistic simulations, including MD and DFT, have struggled 

o reach the scales (time, length, statistics) needed to provide 

eaningful engineering inputs. However, the situation is improv- 

ng; computing resourcing and power has now reached the point 

here it is possible to produce statistically significant databases 

f damage cascade simulations with MD [147,165] , particularly for 

ure fusion-material systems such as W and Fe, enabling, for ex- 

mple, analysis of the cascade overlap behaviour that will charac- 

erise evolution at higher doses under fusion conditions in mate- 

ials with pre-existing defects [349,350] or to study sub-cascade 

ormation [28] . Recent simulations [32] show, for example, that in- 

erconnected sub-cascades in W allow large defect structures to 

orm, indicating that the assumption, perhaps valid for Fe, that 

igh-energy damage events can be modelled using random distri- 

utions of the defects produced in constituent sub-cascades might 

ot be valid in W. 

It is also possible, using an approach involving MD but avoiding 

irect cascade simulations, to model microstructures correspond- 

ng to very high exposure to irradiation approaching a reactor- 

elevant dose of 20 dpa [46] . Experimental observations of radi- 

tion damage in heavily irradiated W [45] show good agreement 

ith predictions derived from simulations based on [46] and also 

xhibit a surprisingly significant effect of self-stress on the mi- 

rostructure developing as a result of accumulation of defects dur- 

ng irradiation. 

Large-scale atomistic simulations can also start to treat surface 

henomena and bulk evolution together [45,54] , which is needed 

o understand stress/strain evolution and hence engineering per- 

ormance of materials under reactor conditions. Experiments have 

ifficulty probing these characteristics, but acceleration methods 

nd hybrid techniques are beginning to quantify some of the mate- 

ial degradation phenomena and shed light on the behaviour hid- 

en from experiments. 

In parallel, AI methods are being employed to calculate force 

elds [351] and offer a bridge between accurate, but slow, 

uantum-based ab initio DFT methods and the less-accurate, but 

ast, classical MD. While acknowledging that these approaches can- 
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ot replace full understanding of the physics, statistical machine- 

earning (ML) methods trained on carefully obtained physical data 

an be of great help when the traditional methods are limited 

r/and their direct application is hindered by such factors as high 

omputational cost [3,351] . The synergy of ML approaches with 

raditional methods opens many avenues in material science, par- 

icularly where ML can be used to bridge scales rapidly [3] . Re- 

nforcing materials modelling with ML methods gives an access 

o the crucial physical properties, such as accurate total energy 

nd MD trajectories [70,75,95,104,105,352] , accurate defect charac- 

erization based on distortion scores [83] , configuration transition 

vents and probabilities for use in Monte Carlo methods [353] , free 

nergy sampling with ab initio accuracy [77,78] , or even investiga- 

ion of continuum domains of materials science [354] . 

At the same time, dynamic simulations are now becoming 

ossible with ab-initio DFT methods (e.g. to calculate threshold 

isplacement energies [10] ), highlighting discrepancies with re- 

ults based on semi-classical models; although careful acceleration 

ethods [14] , where the greatest precision (largest number of va- 

ence electrons) is only used in the most active regions of the cas- 

ade, are part of ongoing developments to reduce the high compu- 

ational cost required to treat larger number of atoms in quantum 

D. 

The availability of real statistics from MD simulations [147] or 

therwise is also allowing for new interpretations of experiments 

y helping to understand the damage populations in irradiated ma- 

erials; for example quantifying the defects missed in experimen- 

al counting (due to resolution limits, defect shadowing, invisibil- 

ty, etc.) [165,166] . This, combined with improved and automatic 

xperimental counting approaches is allowing more direct quan- 

itative comparisons between simulation methods, such as kMC, 

nd TEM observations [167] , and the improved understanding of 

ow small defect clusters can dominate microstructure in irradi- 

ted materials has led to development of new theories to explain 

ow swelling occurs in these circumstances. This subject might 

ot have received attention if the traditional view of large-defect 

ominated microstruture had persisted, illustrating the power of 

ombining modelling with experimental analysis; this will likely 

rompt future combined experimental-simulation research collab- 

rations. kMC [119,154,266,267] , along with rate theory-based ap- 

roaches [121,269] , is also being used to explore evolution beyond 

he immediate cascade collapse timescales (several picoseconds) 

hat MD cannot currently reach with regularity. These techniques 

re able to reach the time and length scales of irradiation experi- 

ents and can begin to provide understanding of the defect evo- 

ution behaviour that will occur in the harsh neutron irradiation 

elds of fusion reactors [155] . 

However, there are still complexities of real materials that mod- 

lling has only partially addressed so far, particularly the role of 

mpurities in trapping or otherwise altering the behaviour of dis- 

ocations and other defects and the corresponding influence on 

ehaviour [181,182,185,193,197] ; such as the effect of C on grain 

oundary strength [355] or as a contaminate influencing the in- 

erpretation of ion-irradiation experiments [356] . Object and Adap- 

ive kMC (OkMC and AkMC) models are able to treat impuri- 

ies, solutes and alloys approximately in several scenarios (e.g. C 

n Fe [113,171] and W [172,173] ), but there is still modelling re- 

nement needed. Direct comparison between kMC simulations of 

on-pure systems (e.g. alloys) and advanced experimental tech- 

iques such as APT that allow direct observation of clustering is an 

ngoing challenge, despite recent examples for clustering in RPV 

teels where modelling has evolved from early qualitative agree- 

ent [357] to recent quantitative performance [137] . Recent im- 

rovements in the cluster analysis approaches for APT data are 

elping to define where modelling effort should be directed in the 

uture. Also, it is not yet clear how to seamlessly relate kMC sim- 
23 
lations, typically neglecting effects of elastic deformation and the 

ssociated stresses, to dislocation dynamics and to the dislocation- 

ased treatment of plasticity of irradiated materials. 

Meanwhile, new multiscale modelling frameworks combining 

everal of the advanced techniques, such as MD with Monte-Carlo 

ethods (e.g. [262] ), or DFT with mean-field theory (e.g. stochas- 

ic cluster dynamics [273] ), and combined with modern compu- 

ational approaches such as machine learning, are allowing sim- 

lations to predict changes in material behaviour and can bridge 

urface phenomena to bulk effects. For example they are help- 

ng to model the limitations of W as a plasma-facing material 

nd thus to design advanced W solutions such as solute-stabilized 

-alloys [287] . However, these integrated approaches are limited 

y the loss of atomistic details through the coarse-graining and 

omogenization required to reach the reactor-relevant time and 

ength scales [3] ; a method to map back to full atomistic struc- 

ures remains an outstanding challenge, which, if solved, would al- 

ow for the possibility of matching irradiation-induced damage to 

asic mechanisms driving material performance. 

An ongoing area of innovation concerns modelling of alloys, 

oth in the low impurity concentration limit (e.g in W [172–

75] ), which is more representative of real engineering materials, 

ut also at higher “additive” concentrations characteristic of al- 

oys engineered to solve specific issues in the nuclear environment 

e.g. so-called W smart alloys designed to prevent WO 3 forma- 

ion [296] ). 

Various advanced experimental characterisation techniques are 

elping to accelerate model validation by reducing the spatial and 

emporal gap been simulations/models and experiments, includ- 

ng X-ray diffraction imaging [300,358] and laser-based measure- 

ents [316,317,359] . 

The behaviour of gas, helium and hydrogen, in structural fu- 

ion materials, either created directly in structural materials due 

o reactions with high energy neutrons or originating from exhaust 

ases of the fusion plasma impinging on reactor walls, is a key and 

nique (to fusion) issue [4] where understanding is still develop- 

ng. Recent modelling effort has looked at the influence of H on 

he formation of He bubbles, where experimental data has so far 

roved inconclusive (although it generally suggests that H plays a 

ole) [360] . Atomistic simulations (MD and ab-initio) appear to be 

onsistent with the idea that H is trapped within He bubbles [329–

31] . Helium is strongly trapped at grain boundaries and can dra- 

atically change material performance. However, both the mech- 

nism of bubble formation at GBs, and the impact they have on, 

or example, deformation and fracture behaviour is still a new re- 

earch area, with many opportunities for modelling to contribute 

n the future. 

There is an open question as to whether H enhances [361] or 

educes [324] swelling in steels. Similarly, helium can both in- 

rease and decrease swelling depending on the density of pre- 

xisting or irradiation-induced cavities [362] . 

Even in mature industries, such as tritium production in fis- 

ion reactors for strategic stockpiles, there are still ongoing ques- 

ions that require attention, such as how hydrogen isotopes prop- 

gate through materials exposed to irradiation and therefore con- 

aining defects [340,341] . In fusion, tritium fuel propagation and 

etention in materials is even more critical because it can severely 

ffect both material degradation and reactor efficiency and will im- 

act on radiological safety. This important issue is receiving signif- 

cant experimental attention, for example via thermal desorption 

pectroscopy (TDS) (e.g. [363,364] ), and innovative modelling ap- 

roaches are being developed such as spatially-resolved SCD [344] . 

As the foregoing illustrates, the field of modelling applied to the 

roblem of materials for nuclear fusion applications is active and 

ulti-faceted, and involves experts from around the world. Amaz- 

ng progress has been made, particularly in using modelling to in- 



M.R. Gilbert, K. Arakawa, Z. Bergstrom et al. Journal of Nuclear Materials 554 (2021) 153113 

t

m

p

c

D

c

i

C

C

r

-

-

-

v

o

e

i

P

A

J

M

M

M

M

N

s

s

W

W

W

W

W

i

-

r

i

o

i

d

A

e

h

C

a

A

d

a

t

f

S  

U

fi

t

P

U

S

B

u

a

E

o

n

K

R

 

 

erpret experiments, but there is still a long way to go to make 

odelling the truly predictive tool that is required for the next 

hase of fusion development; that of engineering realization of 

ommercial and near-commercial fusion power plants. 
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