470 research outputs found

    Effects of the integrated galactic IMF on the chemical evolution of the solar neighbourhood

    Full text link
    The initial mass function determines the fraction of stars of different intial mass born per stellar generation. In this paper, we test the effects of the integrated galactic initial mass function (IGIMF) on the chemical evolution of the solar neighbourhood. The IGIMF (Weidner & Kroupa 2005) is computed from the combination of the stellar intial mass function (IMF), i.e. the mass function of single star clusters, and the embedded cluster mass function, i.e. a power law with index beta. By taking into account also the fact that the maximum achievable stellar mass is a function of the total mass of the cluster, the IGIMF becomes a time-varying IMF which depends on the star formation rate. We applied this formalism to a chemical evolution model for the solar neighbourhood and compared the results obtained by assuming three possible values for beta with the results obtained by means of a standard, well-tested, constant IMF. In general, a lower absolute value of beta implies a flatter IGIMF, hence a larger number of massive stars and larger metal ejection rates. This translates into higher type Ia and II supernova rates, higher mass ejection rates from massive stars and a larger amount of gas available for star formation, coupled with lower present-day stellar mass densities. (abridged) We also discuss the importance of the present day stellar mass function (PDMF) in providing a way to disentangle among various assumptions for beta. Our results indicate that the model adopting the IGIMF computed with beta ~2 should be considered the best since it allows us to reproduce the observed PDMF and to account for most of the chemical evolution constraints considered in this work.Comment: 22 pages, 19 figure

    The Extreme Hosts of Extreme Supernovae

    Full text link
    We use GALEX ultraviolet (UV) and optical integrated photometry of the hosts of seventeen luminous supernovae (LSNe, having peak M_V < -21) and compare them to a sample of 26,000 galaxies from a cross-match between the SDSS DR4 spectral catalog and GALEX interim release 1.1. We place the LSNe hosts on the galaxy NUV-r versus M_r color magnitude diagram (CMD) with the larger sample to illustrate how extreme they are. The LSN hosts appear to favor low-density regions of the galaxy CMD falling on the blue edge of the blue cloud toward the low luminosity end. From the UV-optical photometry, we estimate the star formation history of the LSN hosts. The hosts have moderately low star formation rates (SFRs) and low stellar masses (M_*) resulting in high specific star formation rates (sSFR). Compared with the larger sample, the LSN hosts occupy low-density regions of a diagram plotting sSFR versus M_* in the area having higher sSFR and lower M_*. This preference for low M_*, high sSFR hosts implies the LSNe are produced by an effect having to do with their local environment. The correlation of mass with metallicity suggests that perhaps wind-driven mass loss is the factor that prevents LSNe from arising in higher-mass, higher-metallicity hosts. The massive progenitors of the LSNe (>100 M_sun), by appearing in low-SFR hosts, are potential tests for theories of the initial mass function that limit the maximum mass of a star based on the SFR.Comment: 8 pages, 3 figures, 2 tables, accepted to ApJ, amended references and updated SN designation

    Investigating the Arctic phytoplankton variability and diversity based on modeling and satellite retrievals

    Get PDF
    In our study we focus on improving our understanding of possible interactions between the open water and sea ice and the surface ocean biogeochemistry under the recently observed sea ice decline in the Arctic. In particular, the analysis of changes in phytoplankton functional types (PFTs) over 2002 to 2012 based on long-term time series of satellite retrievals and supported by a modeling study is presented. The phytoplankton dynamics as well as phytoplankton diversity in response to Arctic Amplification is simulated with the DARWIN biogeochemical model (Follows et al., 2007, Dutkiewicz et al., 2015) coupled to the Massachusetts Institute of Technology general circulation model (MITgcm) with a configuration based on a cubed‐sphere grid (Menemenlis et al. 2008). The model results are complemented with information on phytoplankton compositions retrieved with PhytoDOAS (Bracher et al. 2009, Sadeghi et al. 2012) from available hyper-spectral optical satellite measurements (SCIAMACHY and OMI), which are synergistically combined via an optimal interpolation technique with multi-spectral optical satellite data (OC-CCI)

    Families of dynamically hot stellar systems over ten orders of magnitude in mass

    Full text link
    Dynamically hot stellar systems, whether star clusters or early-type galaxies, follow well-defined scaling relations over many orders of magnitudes in mass. These fundamental plane relations have been subject of several studies, which have been mostly confined to certain types of galaxies and/or star clusters so far. Here, we present a complete picture of hot stellar systems ranging from faint galaxies and star clusters of only a few hundred solar masses up to giant ellipticals (gEs) with 10^12 M_sun, in particular including large samples of compact ellipticals (cEs), ultra-compact dwarf galaxies (UCDs), dwarf ellipticals (dEs) of nearby galaxy clusters and Local Group ultra-faint dwarf spheroidals (dSphs). For all those stellar systems we show the effective radius-luminosity, effective radius-stellar mass, and effective mass surface density-stellar mass plane. Two families of hot stellar systems can be differentiated: the 'galaxian' family, ranging from gEs over Es and dEs to dSphs, and the 'star cluster' family, comprising globular clusters (GCs), UCDs and nuclear star clusters (NCs). Interestingly, massive ellipticals have a similar size-mass relation as cEs, UCDs and NCs, with a clear common boundary towards minimum sizes. No object of either family is located in the 'zone of avoidance' beyond this limit. Even the majority of early-type galaxies at high redshift obeys this relation. The sizes of dEs and dSphs as well as GCs barely vary with mass over several orders of magnitude. We use the constant galaxy sizes to derive the distances of several local galaxy clusters. Both, galaxies and star clusters, do not exceed a surface density of \Sigma_eff = 3.17*10^{10}*M^{-3/5} M_sun pc^{-2}, causing an orthogonal kink in the galaxy sequence for ellipticals more massive than 10^{11} M_sun. The densest stellar systems (within their effective radius) are nuclear star clusters. (abridged)Comment: 13 pages, 7 figures, accepted for publication in MNRAS. Errors for mean effective radii and related quantities in Table 3 corrected, references added and affiliation changed in the replaced versio

    The HADES mission concept - astrobiological survey of Jupiter's icy moon Europa

    Get PDF
    The HADES Europa mission concept aims to provide a framework for an astrobiological in-depth investigation of the Jupiter moon Europa, relying on existing technologies and feasibility. This mission study proposes a system consisting of an orbiter, lander and cryobot as a platform for detailed exploration of Europa. While the orbiter will investigate the presence of a liquid ocean and characterize Europa's internal structure, the lander will survey local dynamics of the ice layer and the surface environment. The lander releases a cryobot, that melts into the ice, will sample the pristine subsurface and is expected to provide data on organic and gaseous content and putative bio-signatures. In summary, we present the scientific objectives for an astrobiological investigation of Europa, resulting in a mission concept with a detailed evaluation of scientific instrumentation, mission sequences, basic design of the spacecraft, technology needs and cost estimation

    High mass star formation in normal late-type galaxies: observational constraints to the IMF

    Full text link
    We use Halpha and FUV GALEX data for a large sample of nearby objects to study the high mass star formation activity of normal late-type galaxies. The data are corrected for dust attenuation using the most accurate techniques at present available, namely the Balmer decrement and the total far-infrared to FUV flux ratio. The sample shows a highly dispersed distribution in the Halpha to FUV flux ratio indicating that two of the most commonly used star formation tracers give star formation rates with uncertainties up to a factor of 2-3. The high dispersion is due to the presence of AGN, where the UV and the Halpha emission can be contaminated by nuclear activity, highly inclined galaxies, for which the applied extinction corrections are probably inaccurate, or starburst galaxies, where the stationarity in the star formation history required for transforming Halpha and UV luminosities into star formation rates is not satisfied. Excluding these objects we reach an uncertainty of ~50% on the SFR. The Halpha to FUV flux ratio increases with their total stellar mass. If limited to normal star forming galaxies, however, this relationship reduces to a weak trend that might be totally removed using different extinction correction recipes. In these objects the Halpha to FUV flux ratio seems also barely related with the FUV-H colour, the H band effective surface brightness, the total star formation activity and the gas fraction. The data are consistent with a Kroupa and Salpeter initial mass function in the high mass stellar range and imply, for a Salpeter IMF, that the variations of the slope cannot exceed 0.25, from g=2.35 for massive galaxies to g=2.60 in low luminosity systems. We show however that these observed trends, if real, can be due to the different micro history of star formation in massive galaxies with respect to dwarf.Comment: Accepted for publication on Ap

    On the Nature of Star Formation at Large Galactic Radii

    Full text link
    We have compared far-ultraviolet (FUV), near-ultraviolet (NUV), and Halpha measurements for star forming regions in 21 galaxies, in order to characterise the properties of their discs at radii beyond the main optical radius (R25). In our representative sample of extended and non-extended UV discs we find that half of the extended UV discs also exhibit extended Halpha emission. We find that extended UV discs fall into two categories, those with a sharp truncation in the Halpha disc close to the optical edge (R25), and those with extended emission in Halpha as well as in the ultraviolet. Although most galaxies with strong Halpha truncations near R25 show a significant corresponding falloff in UV emission (factor 10--100), the transition tends to be much smoother than in Halpha, and significant UV emission often extends well beyond this radius, confirming earlier results by Thilker et al. (2007) and others. After correcting for dust attenuation the median fraction of total FUV emission from regions outside of R25 is 1.7%, but it can be as high as 35% in the most extreme cases. The corresponding fractions of Halpha emission are approximately half as large on average. This difference reflects both a slightly lower ratio of Halpha to UV emission in the HII regions in the outer discs, as well as a lower fraction of star clusters showing HII regions. Most HII regions in the extended disc have fluxes consistent with small numbers of ionising O-type stars, and this poor sampling of the upper initial mass function in small clusters can probably account for the differences in the emission properties, consistent with earlier conclusions by Zaritsky & Christlein (2007), without needing to invoke a significant change in the stellar IMF itself. Consistent Ha/FUV ratios and brightest HII region to total Halpha fluxes in the inner and extended discs across our whole galaxy sample demonstrate no evidence for a change in the cluster luminosity function or the IMF in the low gas density outer disc.Comment: Accepted for publication in MNRAS. 21 Pages, 13 Figures, 2 Table
    • 

    corecore