599 research outputs found

    Genetic optimization of energy- and failure-aware continuous production scheduling in pasta manufacturing

    Get PDF
    Energy and failure are separately managed in scheduling problems despite the commonalities between these optimization problems. In this paper, an energy- and failure-aware continuous production scheduling problem (EFACPS) at the unit process level is investigated, starting from the construction of a centralized combinatorial optimization model combining energy saving and failure reduction. Traditional deterministic scheduling methods are difficult to rapidly acquire an optimal or near-optimal schedule in the face of frequent machine failures. An improved genetic algorithm (IGA) using a customized microbial genetic evolution strategy is proposed to solve the EFACPS problem. The IGA is integrated with three features: Memory search, problem-based randomization, and result evaluation. Based on real production cases from Soubry N.V., a large pasta manufacturer in Belgium, Monte Carlo simulations (MCS) are carried out to compare the performance of IGA with a conventional genetic algorithm (CGA) and a baseline random choice algorithm (RCA). Simulation results demonstrate a good performance of IGA and the feasibility to apply it to EFACPS problems. Large-scale experiments are further conducted to validate the effectiveness of IGA

    An efficient genetic method for multi-objective continuous production scheduling in industrial internet of things

    Get PDF
    Continuous manufacturing is playing an increasingly important role in modern industry, while research on production scheduling mainly focuses on traditional batch processing scenarios. This paper provides an efficient genetic method to minimize energy cost, failure cost, conversion cost and tardiness cost involved in the continuous manufacturing. With the help of Industrial Internet of Things, a multi-objective optimization model is built based on acquired production and environment data. Compared with a conventional genetic algorithm, non-random initialization and elitist selection were applied in the proposed algorithm for better convergence speed. Problem specific constraints such as due date and precedence are evaluated in each generation. This method was demonstrated in the plant of a pasta manufacturer. In experiments of 71 jobs in a one-month window, near-optimal schedules were found with significant reductions in costs in comparison to the existing original schedule

    Identification of EEG Dynamics during Freezing of Gait and Voluntary Stopping in Patients with Parkinson’s Disease

    Get PDF
    Mobility is severely impacted in patients with Parkinson's disease (PD), who often experience involuntary stopping from the freezing of gait (FOG). Understanding the neurophysiological difference between “voluntary stopping” and “involuntary stopping” caused by FOG is vital for the detection of and potential intervention for FOG in the daily lives of patients. This study characterised the electroencephalographic (EEG) signature associated with FOG in contrast to voluntary stopping. The protocol consisted of a timed up-and-go (TUG) task and an additional TUG task with a voluntary stopping component, where participants reacted to verbal “stop” and “walk” instructions by voluntarily stopping or walking. Event-related spectral perturbation (ERSP) analysis was performed to study the dynamics of the EEG spectra induced by different walking phases, including normal walking, voluntary stopping and episodes of involuntary stopping (FOG), as well as the transition windows between normal walking and voluntary stopping or FOG. These results demonstrate for the first time that the EEG signal during the transition from walking to voluntary stopping is distinguishable from that during the transition to involuntary stopping caused by FOG. The EEG signature of voluntary stopping exhibits a significantly decreased power spectrum compared with that of FOG episodes, with distinctly different patterns in the delta and low-beta power in the central area. These findings suggest the possibility of a practical EEG-based tool that can accurately predict FOG episodes, excluding the potential confounding of voluntary stopping

    Clinical and molecular characterization of cystinuria in a French cohort: relevance of assessing large-scale rearrangements and splicing variants.

    Get PDF
    Cystinuria is an autosomal recessive disorder of dibasic amino acid transport in the kidney and the intestine leading to increased urinary cystine excretion and nephrolithiasis. Two genes, SLC3A1 and SLC7A9, coding respectively for rBAT and b0,+AT, account for the genetic basis of cystinuria. This study reports the clinical and molecular characterization of a French cohort including 112 cystinuria patients and 25 relatives from 99 families. Molecular screening was performed using sequencing and Quantitative Multiplex PCR of Short Fluorescent Fragments analyses. Functional minigene-based assays have been used to characterize splicing variants. Eighty-eight pathogenic nucleotide changes were identified in SLC3A1 (63) and SLC7A9 (25) genes, of which 42 were novel. Interestingly, 17% (15/88) and 11% (10/88) of the total number of variants correspond, respectively, to large-scale rearrangements and splicing mutations. Functional minigene-based assays were performed for six variants located outside the most conserved sequences of the splice sites; three variants affect splice sites, while three others modify exonic splicing regulatory elements (ESR), in good agreement with a new in silico prediction based on ΔtESRseq values. This report expands the spectrum of SLC3A1 and SLC7A9 variants and supports that digenic inheritance is unlikely. Furthermore, it highlights the relevance of assessing large-scale rearrangements and splicing mutations to fully characterize cystinuria patients at the molecular level

    Search for astronomical neutrinos from blazar TXS 0506+056 in super-kamiokande

    Get PDF
    We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS 0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrinos from the same location by the IceCube collaboration. Using Super-Kamiokande neutrino data across several data samples observed from 1996 April to 2018 February we have searched for both a total excess above known backgrounds across the entire period as well as localized excesses on smaller timescales in that interval. No significant excess nor significant variation in the observed event rate are found in the blazar direction. Upper limits are placed on the electron- and muon-neutrino fluxes at the 90% confidence level as 6.0 × 10−7 and 4.5 × 10−7–9.3 × 10−10 [erg cm−2 s−1], respectively

    Effects of vacuum packaging on the physical quality of minimally processed potatoes

    Get PDF
    In recent years, consumers have become more health conscious in their food choices but they also have less time to prepare healthy meals. As a result, minimally processed (MP) products have become an important sector of the food industry because of their ‘fresh-like’ qualities, convenience and speed of meal preparation. In this study, the physical qualities of MP potatoes (‘Désirée’ variety) stored for 7 days in vacuum packaging were evaluated. The shelf life of MP potatoes was effectively extended to nearly 1 week under refrigerated storage by using vacuum packaging systems. The main quality parameters were constant during storage

    Targeted Deficiency of the Transcriptional Activator Hnf1α Alters Subnuclear Positioning of Its Genomic Targets

    Get PDF
    DNA binding transcriptional activators play a central role in gene-selective regulation. In part, this is mediated by targeting local covalent modifications of histone tails. Transcriptional regulation has also been associated with the positioning of genes within the nucleus. We have now examined the role of a transcriptional activator in regulating the positioning of target genes. This was carried out with primary β-cells and hepatocytes freshly isolated from mice lacking Hnf1α, an activator encoded by the most frequently mutated gene in human monogenic diabetes (MODY3). We show that in Hnf1a−/− cells inactive endogenous Hnf1α-target genes exhibit increased trimethylated histone H3-Lys27 and reduced methylated H3-Lys4. Inactive Hnf1α-targets in Hnf1a−/− cells are also preferentially located in peripheral subnuclear domains enriched in trimethylated H3-Lys27, whereas active targets in wild-type cells are positioned in more central domains enriched in methylated H3-Lys4 and RNA polymerase II. We demonstrate that this differential positioning involves the decondensation of target chromatin, and show that it is spatially restricted rather than a reflection of non-specific changes in the nuclear organization of Hnf1a-deficient cells. This study, therefore, provides genetic evidence that a single transcriptional activator can influence the subnuclear location of its endogenous genomic targets in primary cells, and links activator-dependent changes in local chromatin structure to the spatial organization of the genome. We have also revealed a defect in subnuclear gene positioning in a model of a human transcription factor disease

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore