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ABSTRACT

We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the

direction of the blazar TXS0506+056 using the Super-Kamiokande detector following the detection of

a 100 TeV neutrino from the same location by the IceCube collaboration. Using Super-Kamiokande
neutrino data across several data samples observed from April 1996 to February 2018 we have searched

for both a total excess above known backgrounds across the entire period as well as localized excesses

on smaller time scales in that interval. No significant excess nor significant variation in the observed

event rate are found in the blazar direction. Upper limits are placed on the electron and muon neutrino
fluxes at 90% confidence level as 6.0× 10−7 and 4.5× 10−7 to 9.3× 10−10 [erg/cm2/s], respectively.

Keywords: neutrinos, —BL Lacertae objects: individual (TXS0506+056)

1. INTRODUCTION

TXS0506+056 is a BL Lac type blazar (redshift z = 0.3365±0.0010 (Paiano et al. 2018)) and located at right ascen-

sion (R.A.)=77.3582◦ and declination (Dec.)=+5.6931◦ (J2000 equinox) (Massaro et al. 2015). The IceCube Neutrino

Observatory (Aartsen et al. 2017) detected a high-energy neutrino event with an estimated energy of 290 TeV on 22

September, 2017 at 20:54:30.43 Coordinated Universal Time (IceCube-170922A), the arrival direction of which coincides
with the location of TXS0506+056 (Aartsen et al. 2018a,b). Within a minute of detection, this event’s information

shared via the Gamma-ray Coordinate Network (GCN) (GCN/AMON Notice: https://gcn.gsfc.nasa.gov/amon.html)

and follow-up observations over a wide range of energiers were carried out by several observatories. According to

∗ also at Department of Physics and Astronomy, UCLA, CA 90095-1547, USA.
† Deceased.
‡ also at BMCC/CUNY, Science Department, New York, New York, USA.
§ currently at Queen Mary University of London, London, E1 4NS, United Kingdom.
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the Fermi All-Sky Variability Analysis (FAVA) (Abdollahi et al. 2017), TXS0506+056 brightened in the GeV band

starting in April 2017 (Tanaka et al. 2017). Fermi’s Automated Science Processing (ASP) also found a gamma-ray

flare from this source years before. Subsequently, the IceCube collaboration additionally reported a possible neutrino

event excess from this blazar in older data between September 2014 and March 2015 (Aartsen et al. 2018b). Coinci-
dence between the neutrino arrival direction and the blazar location as well as timing correlated with the associated

gamma-ray flare suggest that the observed neutrinos originated from the blazar and strongly motivate searches for

neutrinos in the other energy regions.

2. SUPER-KAMIOKANDE EXPERIMENT

Super-Kamiokande (SK) (Fukuda et al. 2003) is a large water Cherenkov detector located 1000 m underground
(2700 m.w.e.) in the Kamioka-mine, Gifu Prefecture, Japan. It is a cylindrical detector, 39.3 m in diameter and

41.4 m in height and contains 50 kilotonnes of ultra-pure water as neutrino target. The tank is optically separated

into an inner detector (ID) and an outer detector (OD) by a structure placed ∼2 m from the tank wall. More than

11,000 20-inch photomultiplier tubes (PMTs) in the ID are used to observe the pattern and amount of Cherenkov

photons emitted by charged particles produced by neutrino interactions in the water. The OD is primarily used as
a veto and has 1885 8-inch PMTs and is covered with a Tyvek sheet to enhance the light reflection from Cherenkov

photons. Super-Kamiokande is primarily sensitive to particle interactions in the energy region of several MeV to a

few tens of TeV. In particular, SK observes atmospheric neutrinos above several 10 MeV at a rate of ∼8 events per

day in a 22.5 kilotonne fiducial volume within the ID (Jiang et al. 2019). The overburden of the mountain above the
detector reduces the cosmic ray muon rate at the detector by a factor of ∼105 compared to that at the surface. Such

backgrounds are almost completely eliminated by anti-coincidence of the ID and OD, reducing non-neutrino events to

less than 1% of the final data sample.

The SK experiment has been operated since April 1996 and has made observations in four distinct phases known

as SK-I, SK-II, SK-III, and SK-IV. The first phase, SK-I, lasted from April 1996 to July 2001 (1489.2 livetime days)
with 40% photocoverage of the ID using 11146 PMTs. In November 2001, half of those PMTs were lost to an accident

following detector maintenance, so the SK-II phase was operated from December 2002 to October 2005 (798.6 livetime

days) with a reduced photocoverage of 19% (5182 PMTs). After replacing the missing PMTs in April 2006, the SK-III

period operated with the full photocoverage (11129 PMTs) until September 2008 (518.1 livetime days). New front
end electronics were installed immediately thereafter to start the SK-IV phase. This period lasted until June 2018,

when refurbishment work ahead of a detector upgrade began. Though the detector is currently running as SK-V, in

this paper neutrino data from SK-I to SK-IV through February 2018 corresponding to 5924.4 live days are used for

analysis.

3. EVENT SAMPLE

The present analysis utilizes the Super-Kamiokande neutrino data with more than 100 MeV of visible energy,
divided into three classes depending upon the event topology. In the fully-contained (FC) and partially-contained

(PC) event samples, the neutrino interaction is reconstructed within the ID using Cherenkov rings produced by its

daughter particles. An event where all daughter particles stop inside the ID is classified as FC and those where at

least one particle exits the ID and deposits energy in the OD is classified as PC. Upward-going muon (UPMU) events
are observed when energetic muons produced by muon-neutrino interactions with the rock surrounding the detector

penetrate the ID from below its horizon. Since similar downward-going neutrino events suffer from a large amount of

cosmic ray muon backgrounds from above the detector, the event direction of the UPMU sample is restricted to be

upward. There is no such restriction on FC and PC events. Both electron neutrinos (νe, ν̄e) and muon neutrinos (νµ,

ν̄µ) are observed in the FC sample while only muon neutrinos populate the PC and UPMU samples.
Events with vertices inside the fiducial volume, defined as the region in the ID more than 2.0 m from any wall, are

selected for the FC and PC samples. Separation between the FC and PC samples is determined by the number of

effective PMT hits in OD; the FC sample requires fewer than 16 hits (10 hits for SK-I). Events rejected by this cut are

classified as PC. UPMU events where the muon passes through the detector (upward through-going muons) as well as
events where it stops in the detector (upward stopping muons) are included in this analysis. Upward through-going

muon events are required to have a muon track longer than 7.0 m and stopping events are required to have a muon

momentum greater than 1.6 GeV. Both criteria ensure that the reconstructed muon direction is from below the horizon.

Details of the event selection can be found in Ashie et al. (2005).
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In order to estimate the atmospheric neutrino background for this search, a 500-year-equivalent Monte Carlo (MC)

simulation of each SK phase has been used. The NEUT interaction generator (Hayato 2009) has been adopted for

interactions in water and a detector simulation based on the Geant3 (Brun et al. 1987) framework is employed for

tracking secondary particles and simulating the detector response. Additional simulation details are presented in
Abe et al. (2018)

The arrival direction of neutrinos is determined by reconstruction of Cherenkov rings in the ID and the reconstruction

quality typically depends on the number of such rings and the energy of the initial neutrino interaction. In order to

use events with sufficient angular resolution for association with the blazar direction in this search, an additional cut

on the observed energy is applied, 5.1 GeV for FC events and 1.8 GeV for PC events. This ensures that the angular
deviation of the reconstructed direction from the truth is within 10 degrees for more than 68% of these events. Since

UPMU events originate from neutrinos with higher energy than other categories, their arrival direction is estimated

with higher accuracy. Therefore no additional restriction on the UPMU energy is used as more than 77% of events are

reconstructed within 5 degrees of the true arrival direction.

4. ANALYSIS RESULTS

The analysis described below searches for a possible neutrino excess from the blazar by first counting the number of

neutrinos in an angular region around the direction to the assumed source. Then the number of events coming from

an alternative direction are studied to check the consistency of the observation and background predictions. Finally,

a simple statistical method is used to test for local increases in the event rate coming from the blazar direction.

Figure 1 shows a sky map of the reconstructed arrival direction of selected neutrino events around the blazar direction
for all samples. Based on the angular resolution of the reconstructed direction in each sample, we defined the search

region to be 10 (5) degrees around the blazar location for FC and PC (UPMU) (Abe et al. 2017). There were 18 FC,

29 PC, and 20 UPMU events observed in these regions during SK I–IV. Note that neutrino events observed in the FC

sample include both electron neutrino (νe and ν̄e) and muon neutrino (νµ and ν̄µ) interactions.

Figure 1. Reconstructed arrival directions of fully-contained (FC, black circle), partially-contained (PC, red x), and upward-
going muons (UPMU, blue +) events around the location of blazar TXS0506+056 (α, β) = (77.3582◦,+5.6931◦) in equatorial
coordinates. The horizontal axis is the right ascension and the veritical axis the declination. The shaded circle in the left (right)
figure shows the 10 (5) degree search cone used in the analysis of FC and PC (UPMU) events.

In order to quantitatively study possible event excesses above atmospheric neutrino backgrounds, MC is used to

predict the event rate in the search region of each sample. The atmospheric neutrino event rate depends on the arrival

direction because the thickness of the atmosphere and the neutrino oscillation probability change with zenith angle

(in detector coordinates). The thicker the atmosphere, the higher the probability that atmospheric neutrinos will be
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generated. For downward- or horizontally-produced neutrinos the path length to the detector is relatively short and

the effect of neutrino oscillations is reduced. Consequently, since the zenith angle is related to declination, the event

rate also varies with declination. To simulate the effect of varying right ascension in the actual data, MC events are

randomly assigned right ascension values under the assumption of a flat local sidereal time. Several corrections are
applied on an event-by-event basis to account for neutrino oscillations and to reflect best-fit values of systematic error

parameters from the analysis in Abe et al. (2018). The event rates in the search regions are then calculated for each

SK phase and combined with appropriate livetime normalization factors.

Figure 2 shows the observed data events in the each fixed search cone superimposed on the MC taken over various

declinations. Note that the FC and PC background events distribute across all declinations and show a slight increase
at higher declinations, especially PC events, due to the decrease of upward-going muon neutrinos lost to neutrino

oscillations. The double-bump structure around −50 and 50 degrees is due to the increased atmospheric neutrino

flux coming from the near−horizon direction, where the effective atmospheric depth is deeper than other directions.

Since UPMU events are required to come from below the horizon, their maximum declination is about 54 degrees.
The observed data agrees with the expected background within 0.7σ for FC, 1.1σ for PC, and 1.2σ for UPMU events,

considering statistical uncertainties alone.
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Figure 2. Number of detected events in each search region (points with error bar) are shown with corresponding predictions
for the FC (left, black), PC (middle, red), and UPMU (right, blue) samples. The error bar shows the statistical error.

To further check the consistency of the observed event rates in the search cones, we further investigate by studying

similarly sized angular regions taken at the same declination as TXS0506+056 but with different right ascension values.
The average and variance of the number of observed events in these “off-source” regions are compared with thse in

the “on-source” region around the blazar. They are consistent within 0.5σ for FC, 1.6σ for PC, and 1.5σ for UPMU

based on counting statistics only. The event rate in the on-source search cone is 3.0± 0.7 for FC, 4.9± 0.9 for PC, and

3.4± 0.8 for UPMU events per 1000 livetime days. Averaging the off-source rates yields 2.7± 0.6 for FC, 3.9± 0.6 for
PC, and 2.5±0.6 events per 1000 livetime days. Therefore the on-source and off-source rates are consistent, indicating

no excess of neutrino events in the direction of the blazar.

We additionally searched for evidence of a local increase in the neutrino event rate in the period April 1996 to

February 2018 to test for possible correlation with gamma-ray flaring of the blazar. Since the atmospheric neutrino

rate is known to be stable at each SK phase, the number of observed neutrino events is expected to increase linearly
with increasing livetime if there is no neutrino emission from the blazar. On the other hand, the event rate would

deviate from linearity if there were additional neutrinos from the gamma-ray flare. In order to test for the presence

of such a variation, we evaluated the probability (p-value) that the observed rate is consistent using a Kolmogorov-

Smirnov test (KS-test). Figure 3 compares the cumulative observed events with the expected events as a function
of livetime day. To estimate the degree of deviation, a set of 10,000 pseudo experiments was generated assuming

that the expected background from the MC in each SK phase was distributed according to a Poisson function. In

each pseudo experiment, the observed time of each event was randomly assigned assuming a constant rate in each SK

phase. The maximum distance between each pseudo experiment and the expectation is compared to that from the
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observed SK data to calculate a p-value. This represents the percentage of pseudo experiments that have a maximum

distance larger than the data. The estimated p-values are 91.74%, 12.26%, and 48.75% for FC, PC, and UPMU events,

respectively, indicating consistency with a constant event rate. Accordingly, we conclude that no significant signal

from the direction of blazar TXS0506+056 exists in the SK data during the observation period considered here.

Figure 3. Normalized cumulative events as a function of livetime day for FC, PC, and UPMU. The solid lines are observed
events from the on-source region and the dashed lines are estimated background events assuming a constant event rate for each
SK phase. The ranges of each SK phase are shown as vertical dashed lines. The maximum distance between the experimental
data and the expectation is 0.13 for FC, 0.25 for PC, and 0.21 for UPMU.

Since no significant indication of a signal from the blazar was found in any of the tests above, we estimate flux limits

based on the expected background throughout the entire observation period. In the following we derive limits on the

neutrino fluence from this blazar. Based on the assumption of no signal, the upper limit on the neutrino fluence is
estimated following Swanson et al. (2006) and Thrane et al. (2009):

Φνx+ν̄x
FC

=
NFC

90

NT

∫
dEν (σνx(Eν)ενx(Eν) + σν̄x(Eν)εν̄x(Eν)) λ(E

−2
ν )

(x = e, µ), (1)
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Φ
νµ+ν̄µ
PC

=
NPC

90

NT

∫
dEν (σνµ(Eν)ενµ(Eν) + σν̄µ(Eν)εν̄µ(Eν))λ(E

−2
ν )

, (2)

Φ
νµ+ν̄µ
UPMU

=
NUPMU

90

Aeff(z)
∫
dEν (P νµ(Eν)Sνµ(z, Eν) + P ν̄µ(Eν)S ν̄µ(z, Eν))λ(E

−2
ν )

. (3)

Here N90 is the upper limit on the number of the events above the background at 90% Confidence Level (C.L.), NT is

the number of nucleons in the 22.5 kiloton fiducial volume of the detector, σ(Eν ) is the total neutrino interaction cross-

section from the NEUT model, and ε(Eν) is the neutrino detection efficiency. The parameter Aeff is the effective area

of SK to UPMU interactions and P (Eν) is the probability for a neutrino to produce a muon in the rock surrounding
that reaches SK. Calculation of the latter is done using the charged-current cross section for muon neutrino-nucleon

interaction in rock coupled with the expected range of the resulting muon produced assuming the initial vertex is some

distance from the detector. The attenuation of neutrinos due to their interactions in the earth is given by S(z, Eν)

and taken from Gandhi et al. (1996) using the “Preliminary Earth Model” (Dziewonski & Anderson 1981). Finally,
λ(E−2

ν ) is the number density distribution from the blazar’s direction, which we assume to follow a power law with

spectral index of −2 as in the IceCube analysis (Aartsen et al. 2018a).

Assuming Poisson statistics for the expected backgrounds described above, N90 for the FC, PC, and UPMU samples

has been estimated to be 10.2, 14.6, and 12.7, respectively. For the FC sample, we conservatively make no distinction

between electron and muon type neutrinos when calculatingN90.
1 The energy ranges used in the integrals in Equation 3

are 5.1 - 10 GeV (FC), 1.8 - 100 GeV (PC), and 1.6 GeV - 10 TeV (UPMU). These ranges represent the MC neutrino

energies populating each sample. Upper limits are calculated for both electron and muon neutrinos using FC events

since this sample is sensitive to both. Only that of muon neutrino fluence limits are estimated for the other samples.

The results are shown in Table 1. In these calculations, the fluence limits are calculated using the average zenith angle
to the source taken over the detector observation period. since the effective area, Aeff(z), and the shadowing effect,

S(z, Eν), depend on the zenith angle and fluctuate with the motion of the Earth.

Table 1. Summary of the data samples and fluence limits. Up-
per limits at 90% C.L. on the neutrino fluence have been calculated
assuming an E−2 energy spectrum from blazar TXS0506+056.

FC PC UPMU

Energy Range [GeV] 5.1-10 1.8-100 1.6-104

Search Cone [◦] 10 10 5

Observed Events 18 29 20

Expected Background 15.2 22.9 14.5

N90 10.2 14.6 12.7

Fluence Limit (νµ + ν̄µ) [cm
−2] 6.9× 104 1.1× 105 1.3 × 102

Fluence Limit (νe + ν̄e) [cm
−2] 1.9× 104 - -

Figure 4 shows the energy-dependent upper limits for electron neutrinos (νe + ν̄e) and muon neutrinos (νµ + ν̄µ)
fluxes by SK observations compared IceCube group (Aartsen et al. 2018a). The IceCube collaboration considered two

neutrino emission periods to calculate the flux limit. In the first scenario, neutrinos were assumed to be emitted only

during the about 6 month period corresponding to the duration of the γ-ray flare. Alternatively, neutrinos emitted

over the whole observation of IceCube (7.5 years) were considered. These two benchmark cases and the result of our

analysis are shown in Figure 4.
Above 10 GeV the upper limits are obtained from UPMU data by using same formula described above with the

corresponding energy range of the integration. It should be noted that the neutrino energy cannot be reconstructed

for UPMU events since they are produced by neutrinos interacting in the rock surrounding the detector. Therefore,

the same value of N90 is used to calculate the upper limit in each energy bin. Note that the FC sample is populated

1 Though tau neutrinos are present in the SK data, they represent a negligible contribution to the current data set.
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almost entirely by events with energy less than 10 GeV, so our limit for electron neutrinos spans a single bin. For muon

neutrinos in the 1 to 10 GeV bin and in the 10 to 100 GeV bin, the limit is calculated using the total observation and

expectation, summing over the FC, PC, and UPMU contributions. The flux limit by SK covers ∼1 GeV to 10 TeV,

and becomes more stringent as the energy increase because of larger neutrino cross section and smaller atmospheric
neutrino backgrounds.

We note that the IceCube group observed evidence of a neutrino event excess between 2014 and 2015 from the

direction of the blazar whose best fit energy spectrum was E−2.2±0.2 and whose flux was 2.5+1.1
−1.0 × 10−9 [erg/cm2/s]

at 100 TeV. This corresponds to a flux of 2.0 × 10−8[erg/cm2/s] at 3.2 GeV and 5.1 × 10−9[erg/cm2/s] at 3.2 TeV,

respectively. They can be compared limits from the present analysis of 4.5×10−7[erg/cm2/s] and 9.3×10−10[erg/cm2/s]
in the respective energy regions. If the IceCube spectral index is used in our calculations, the flux limits increase by

15% at most.
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Figure 4. 90% C.L. energy-dependent flux upper limit in the direction of blazar TXS0506+056 by SK νµ + ν̄µ (red) and
νe + ν̄e (blue) compared with IceCube (Aartsen et al. 2018a).

5. CONCLUSION

We performed a search for neutrino detections coincident in the direction of blazar TXS0506+056 using the obser-
vation data from April 1996 to February 2018 by Super-Kamiokande in GeV to several TeV regions. By comparing to

the expected backgrounds, no significance excess was observed at greater than the 2σ level in the blazar direction of 5

(10) degrees for UPMU (FC, PC) samples. No significant temporal increase of neutrino flux was found in the blazar

direction by examining the change of the event rate using the Kolmogorov-Smirnov test. Based on no signal assump-
tion, upper limits of neutrino fluence and the energy-dependent neutrino flux are given for both electron neutrinos and

muon neutrinos. Upper limits are placed on the electron neutrino flux of 6.0× 10−7[erg/cm2/s below 10 GeV and on

the muon neutrino flux of 4.5 × 10−7[erg/cm2/s] to 9.3 × 10−10 [erg/cm2/s] in the range 1 GeV to 10 TeV assuming

an E−2 energy spectrum.
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