72 research outputs found

    Design of the Front End Electronics for the Infrared Camera of JEM-EUSO, and manufacturing and verification of the prototype model

    Full text link
    The Japanese Experiment Module (JEM) Extreme Universe Space Observatory (EUSO) will be launched and attached to the Japanese module of the International Space Station (ISS). Its aim is to observe UV photon tracks produced by ultra-high energy cosmic rays developing in the atmosphere and producing extensive air showers. The key element of the instrument is a very wide-field, very fast, large-lense telescope that can detect extreme energy particles with energy above 101910^{19} eV. The Atmospheric Monitoring System (AMS), comprising, among others, the Infrared Camera (IRCAM), which is the Spanish contribution, plays a fundamental role in the understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. It is used to detect the temperature of clouds and to obtain the cloud coverage and cloud top altitude during the observation period of the JEM-EUSO main instrument. SENER is responsible for the preliminary design of the Front End Electronics (FEE) of the Infrared Camera, based on an uncooled microbolometer, and the manufacturing and verification of the prototype model. This paper describes the flight design drivers and key factors to achieve the target features, namely, detector biasing with electrical noise better than 100Ο100 \muV from 11 Hz to 1010 MHz, temperature control of the microbolometer, from 10∘10^{\circ}C to 40∘40^{\circ}C with stability better than 1010 mK over 4.84.8 hours, low noise high bandwidth amplifier adaptation of the microbolometer output to differential input before analog to digital conversion, housekeeping generation, microbolometer control, and image accumulation for noise reduction

    A Methodology for Evaluating the Robustness of Anomaly Detectors to Adversarial Attacks in Industrial Scenarios

    Full text link
    Anomaly Detection systems based on Machine and Deep learning are the most promising solutions to detect cyberattacks in the industry. However, these techniques are vulnerable to adversarial attacks that downgrade prediction performance. Several techniques have been proposed to measure the robustness of Anomaly Detection in the literature. However, they do not consider that, although a small perturbation in an anomalous sample belonging to an attack, i.e., Denial of Service, could cause it to be misclassified as normal while retaining its ability to damage, an excessive perturbation might also transform it into a truly normal sample, with no real impact on the industrial system. This paper presents a methodology to calculate the robustness of Anomaly Detection models in industrial scenarios. The methodology comprises four steps and uses a set of additional models called support models to determine if an adversarial sample remains anomalous. We carried out the validation using the Tennessee Eastman process, a simulated testbed of a chemical process. In such a scenario, we applied the methodology to both a Long-Short Term Memory (LSTM) neural network and 1-dimensional Convolutional Neural Network (1D-CNN) focused on detecting anomalies produced by different cyberattacks. The experiments showed that 1D-CNN is significantly more robust than LSTM for our testbed. Specifically, a perturbation of 60% (empirical robustness of 0.6) of the original sample is needed to generate adversarial samples for LSTM, whereas in 1D-CNN the perturbation required increases up to 111% (empirical robustness of 1.11)

    Murine muscle engineered from dermal precursors: an in vitro model for skeletal muscle generation, degeneration and fatty infiltration.

    Get PDF
    Skeletal muscle can be engineered by converting dermal precursors into muscle progenitors and differentiated myocytes. However, the efficiency of muscle development remains relatively low and it is currently unclear if this is due to poor characterization of the myogenic precursors, the protocols used for cell differentiation, or a combination of both. In this study, we characterized myogenic precursors present in murine dermospheres, and evaluated mature myotubes grown in a novel three-dimensional culture system. After 57 days of differentiation, we observed isolated, twitching myotubes followed by spontaneous contractions of the entire tissue-engineered muscle construct on an extracellular matrix (ECM). In vitro engineered myofibers expressed canonical muscle markers and exhibited a skeletal (not cardiac) muscle ultrastructure, with numerous striations and the presence of aligned, enlarged mitochondria, intertwined with sarcoplasmic reticula (SR). Engineered myofibers exhibited Na+- and Ca2+-dependent inward currents upon acetylcholine (ACh) stimulation and tetrodotoxin-sensitive spontaneous action potentials. Moreover, ACh, nicotine, and caffeine elicited cytosolic Ca2+ transients; fiber contractions coupled to these Ca2+ transients suggest that Ca2+ entry is activating calcium-induced calcium release from the SR. Blockade by d-tubocurarine of ACh-elicited inward currents and Ca2+ transients suggests nicotinic receptor involvement. Interestingly, after 1 month, engineered muscle constructs showed progressive degradation of the myofibers concomitant with fatty infiltration, paralleling the natural course of muscular degeneration. We conclude that mature myofibers may be differentiated on the ECM from myogenic precursor cells present in murine dermospheres, in an in vitro system that mimics some characteristics found in aging and muscular degeneration

    Hospital Epidemics Tracker (HEpiTracker): Description and pilot study of a mobile app to track COVID-19 in hospital workers

    Get PDF
    Background: Hospital workers have been the most frequently and severely affected professional group during the COVID-19 pandemic, and have a big impact on transmission. In this context, innovative tools are required to measure the symptoms compatible with COVID-19, the spread of infection, and testing capabilities within hospitals in real time. Objective: We aimed to develop and test an effective and user-friendly tool to identify and track symptoms compatible with COVID-19 in hospital workers. Methods: We developed and pilot tested Hospital Epidemics Tracker (HEpiTracker), a newly designed app to track the spread of COVID-19 among hospital workers. Hospital staff in 9 hospital centers across 5 Spanish regions (Andalusia, Balearics, Catalonia, Galicia, and Madrid) were invited to download the app on their phones and to register their daily body temperature, COVID-19-compatible symptoms, and general health score, as well as any polymerase chain reaction and serological test results. Results: A total of 477 hospital staff participated in the study between April 8 and June 2, 2020. Of note, both health-related (n=329) and non-health-related (n=148) professionals participated in the study; over two-thirds of participants (68.8%) were health workers (43.4% physicians and 25.4% nurses), while the proportion of non-health-related workers by center ranged from 40% to 85%. Most participants were female (n=323, 67.5%), with a mean age of 45.4 years (SD 10.6). Regarding smoking habits, 13.0% and 34.2% of participants were current or former smokers, respectively. The daily reporting of symptoms was highly variable across participating hospitals; although we observed a decline in adherence after an initial participation peak in some hospitals, other sites were characterized by low participation rates throughout the study period. Conclusions: HEpiTracker is an already available tool to monitor COVID-19 and other infectious diseases in hospital workers. This tool has already been tested in real conditions. HEpiTracker is available in Spanish, Portuguese, and English. It has the potential to become a customized asset to be used in future COVID-19 pandemic waves and other environments

    The Spanish Infrared Camera onboard the EUSO-BALLOON (CNES) flight on August 24, 2014

    Get PDF
    The EUSO-Balloon (CNES) campaign was held during Summer 2014 with a launch on August 24. In the gondola, next to the Photo Detector Module (PDM), a completely isolated Infrared camera was allocated. Also, a helicopter which shooted flashers flew below the balloon. We have retrieved the Cloud Top Height (CTH) with the IR camera, and also the optical depth of the nonclear atmosphere have been inferred with two approaches: The first one is with the comparison of the brightness temperature of the cloud and the real temperature obtained after the pertinent corrections. The second one is by measuring the detected signal from the helicopter flashers by the IR Camera, considering the energy of the flashers and the location of the helicopter

    The atmospheric science of JEM-EUSO

    Get PDF
    An Atmospheric Monitoring System (AMS) is critical suite of instruments for JEM-EUSO whose aim is to detect Ultra-High Energy Cosmic Rays (UHECR) and (EHECR) from Space. The AMS comprises an advanced space qualified infrared camera and a LIDAR with cross checks provided by a ground-based and airborne Global Light System Stations. Moreover the Slow Data Mode of JEM-EUSO has been proven crucial for the UV background analysis by comparing the UV and IR images. It will also contribute to the investigation of atmospheric effects seen in the data from the GLS or even to our understanding of Space Weather

    Bladder cancer index: cross-cultural adaptation into Spanish and psychometric evaluation

    Get PDF
    BACKGROUND: The Bladder Cancer Index (BCI) is so far the only instrument applicable across all bladder cancer patients, independent of tumor infiltration or treatment applied. We developed a Spanish version of the BCI, and assessed its acceptability and metric properties. METHODS: For the adaptation into Spanish we used the forward and back-translation method, expert panels, and cognitive debriefing patient interviews. For the assessment of metric properties we used data from 197 bladder cancer patients from a multi-center prospective study. The Spanish BCI and the SF-36 Health Survey were self-administered before and 12 months after treatment. Reliability was estimated by Cronbach's alpha. Construct validity was assessed through the multi-trait multi-method matrix. The magnitude of change was quantified by effect sizes to assess responsiveness. RESULTS: Reliability coefficients ranged 0.75-0.97. The validity analysis confirmed moderate associations between the BCI function and bother subscales for urinary (r = 0.61) and bowel (r = 0.53) domains; conceptual independence among all BCI domains (r ≤ 0.3); and low correlation coefficients with the SF-36 scores, ranging 0.14-0.48. Among patients reporting global improvement at follow-up, pre-post treatment changes were statistically significant for the urinary domain and urinary bother subscale, with effect sizes of 0.38 and 0.53. CONCLUSIONS: The Spanish BCI is well accepted, reliable, valid, responsive, and similar in performance compared to the original instrument. These findings support its use, both in Spanish and international studies, as a valuable and comprehensive tool for assessing quality of life across a wide range of bladder cancer patients

    Influence of the Temperature and the Genotype of the HSP90AA1 Gene over Sperm Chromatin Stability in Manchega Rams

    Get PDF
    The present study addresses the effect of heat stress on males' reproduction ability. For that, we have evaluated the sperm DNA fragmentation (DFI) by SCSA of ejaculates incubated at 37°C during 0, 24 and 48 hours after its collection, as a way to mimic the temperature circumstances to which spermatozoa will be subject to in the ewe uterus. The effects of temperature and temperature-humidity index (THI) from day 60 prior collection to the date of semen collection on DFI were examined. To better understand the causes determining the sensitivity of spermatozoa to heat, this study was conducted in 60 males with alternative genotypes for the SNP G/C−660 of the HSP90AA1 promoter, which encode for the Hsp90α protein. The Hsp90α protein predominates in the brain and testis, and its role in spermatogenesis has been described in several species. Ridge regression analyses showed that days 29 to 35 and 7 to 14 before sperm collection (bsc) were the most critical regarding the effect of heat stress over DFI values. Mixed model analyses revealed that DFI increases over a threshold of 30°C for maximum temperature and 22 for THI at days 29 to 35 and 7 to 14 bsc only in animals carrying the GG−660 genotype. The period 29–35 bsc coincide with the meiosis I process for which the effect of the Hsp90α has been described in mice. The period 7–14 bsc may correspond with later stages of the meiosis II and early stages of epididymal maturation in which the replacement of histones by protamines occurs. Because of GG−660 genotype has been associated to lower levels of HSP90AA1 expression, suboptimal amounts of HSP90AA1 mRNA in GG−660 animals under heat stress conditions make spermatozoa DNA more susceptible to be fragmented. Thus, selecting against the GG−660 genotype could decrease the DNA fragmentation and spermatozoa thermal susceptibility in the heat season, and its putative subsequent fertility gainsPublishe

    The CARMENES search for exoplanets around M dwarfs High-resolution optical and near-infrared spectroscopy of 324 survey stars

    Get PDF
    The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520–1710 nm at a resolution of at least R >80 000, and we measure its RV, Hα emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700–900 nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1 m s−1 in very low mass M dwarfs at longer wavelengths likely requires the use of a 10 m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4 m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3–4 m s−1
    • …
    corecore