20 research outputs found

    Consensus guidelines for the detection of immunogenic cell death

    Get PDF
    none82siApoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.Kepp, Oliver; Senovilla, Laura; Vitale, Ilio; Vacchelli, Erika; Adjemian, Sandy; Agostinis, Patrizia; Apetoh, Lionel; Aranda, Fernando; Barnaba, Vincenzo; Bloy, Norma; Bracci, Laura; Breckpot, Karine; Brough, David; BuquĂ©, Aitziber; Castro, Maria G; Cirone, Mara; Colombo, Maria I; Cremer, Isabelle; Demaria, Sandra; Dini, Luciana; Eliopoulos, Aristides G; Faggioni, Alberto; Formenti, Silvia C; FučíkovĂĄ, Jitka; Gabriele, Lucia; Gaipl, Udo S; Galon, JĂ©rĂŽme; Garg, Abhishek; Ghiringhelli, François; Giese, Nathalia A; Guo, Zong Sheng; Hemminki, Akseli; Herrmann, Martin; Hodge, James W; Holdenrieder, Stefan; Honeychurch, Jamie; Hu, Hong-Min; Huang, Xing; Illidge, Tim M; Kono, Koji; Korbelik, Mladen; Krysko, Dmitri V; Loi, Sherene; Lowenstein, Pedro R; Lugli, Enrico; Ma, Yuting; Madeo, Frank; Manfredi, Angelo A; Martins, Isabelle; Mavilio, Domenico; Menger, Laurie; Merendino, NicolĂČ; Michaud, Michael; Mignot, Gregoire; Mossman, Karen L; Multhoff, Gabriele; Oehler, Rudolf; Palombo, Fabio; Panaretakis, Theocharis; Pol, Jonathan; Proietti, Enrico; Ricci, Jean-Ehrland; Riganti, Chiara; Rovere-Querini, Patrizia; Rubartelli, Anna; Sistigu, Antonella; Smyth, Mark J; Sonnemann, Juergen; Spisek, Radek; Stagg, John; Sukkurwala, Abdul Qader; Tartour, Eric; Thorburn, Andrew; Thorne, Stephen H; Vandenabeele, Peter; Velotti, Francesca; Workenhe, Samuel T; Yang, Haining; Zong, Wei-Xing; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, LorenzoKepp, Oliver; Senovilla, Laura; Vitale, Ilio; Vacchelli, Erika; Adjemian, Sandy; Agostinis, Patrizia; Apetoh, Lionel; Aranda, Fernando; Barnaba, Vincenzo; Bloy, Norma; Bracci, Laura; Breckpot, Karine; Brough, David; BuquĂ©, Aitziber; Castro, Maria G; Cirone, Mara; Colombo, Maria I; Cremer, Isabelle; Demaria, Sandra; Dini, Luciana; Eliopoulos, Aristides G; Faggioni, Alberto; Formenti, Silvia C; FučíkovĂĄ, Jitka; Gabriele, Lucia; Gaipl, Udo S; Galon, JĂ©rĂŽme; Garg, Abhishek; Ghiringhelli, François; Giese, Nathalia A; Guo, Zong Sheng; Hemminki, Akseli; Herrmann, Martin; Hodge, James W; Holdenrieder, Stefan; Honeychurch, Jamie; Hu, Hong Min; Huang, Xing; Illidge, Tim M; Kono, Koji; Korbelik, Mladen; Krysko, Dmitri V; Loi, Sherene; Lowenstein, Pedro R; Lugli, Enrico; Ma, Yuting; Madeo, Frank; Manfredi, Angelo A; Martins, Isabelle; Mavilio, Domenico; Menger, Laurie; Merendino, NicolĂČ; Michaud, Michael; Mignot, Gregoire; Mossman, Karen L; Multhoff, Gabriele; Oehler, Rudolf; Palombo, Fabio; Panaretakis, Theocharis; Pol, Jonathan; Proietti, Enrico; Ricci, Jean Ehrland; Riganti, Chiara; Rovere Querini, Patrizia; Rubartelli, Anna; Sistigu, Antonella; Smyth, Mark J; Sonnemann, Juergen; Spisek, Radek; Stagg, John; Sukkurwala, Abdul Qader; Tartour, Eric; Thorburn, Andrew; Thorne, Stephen H; Vandenabeele, Peter; Velotti, Francesca; Workenhe, Samuel T; Yang, Haining; Zong, Wei Xing; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenz

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    Antibacterial nerol cinnamates from the Australian plant Eremophila longifolia

    No full text
    Two new antimicrobial agents, neryl ferulate (1) and neryl p-coumarate (2), were identified using bioassay-guided isolation from the leaves of Eremophila longifolia, which is a medicinal plant used by some Australian Aboriginal communities. Although gradual autoxidation of the nerol subunit hindered the initial attempts to purify and characterize 1 and 2, it was found that the autoxidation could be stopped through storage under argon at −20 °C. Biological evaluation showed that neryl ferulate (1) had moderate activity against various Gram-positive bacteria, while neryl p-coumarate (2) was active only against Enterococcus faecium

    Fractional order generalization of anomalous diffusion as a multidimensional extension of the transmission line equation

    No full text
    In this paper, a new fractional order generalization of the diffusion equation is developed to describe the anisotropy of anomalous diffusion that is often observed in brain tissues using magnetic resonance imaging (MRI). The new model embeds three different fractional order exponents-corresponding to the principal directions of water diffusion-into the governing Bloch-Torrey equation. The model was used to analyze diffusion weighted MRI data acquired from a normal human brain using a 3T clinical MRI scanner. Analysis of the data revealed normal Gaussian diffusion in the cerebral spinal fluid (isotropic fractional order exponent of (0.90 ±0.1), and anomalous diffusion in both the white (0.67 ±0.1) and the gray (0.77 ±0.1) matter. In addition, we observed anisotropy in the fractional exponent values for white mater (0.59 ±0.1) along the fibers versus 0.68 ±0.1 across the fibers), but not for gray matter. This model introduces new parameters to describe the complexity of the tissue microenvironment that may be sensitive biomarkers of the structural changes arising in neural tissues with the onset of disease

    Antibacterial Nerol Cinnamates from the Australian Plant <i>Eremophila longifolia</i>

    No full text
    Two new antimicrobial agents, neryl ferulate (<b>1</b>) and neryl <i>p</i>-coumarate (<b>2</b>), were identified using bioassay-guided isolation from the leaves of <i>Eremophila longifolia</i>, which is a medicinal plant used by some Australian Aboriginal communities. Although gradual autoxidation of the nerol subunit hindered the initial attempts to purify and characterize <b>1</b> and <b>2</b>, it was found that the autoxidation could be stopped through storage under argon at −20 °C. Biological evaluation showed that neryl ferulate (<b>1</b>) had moderate activity against various Gram-positive bacteria, while neryl <i>p</i>-coumarate (<b>2</b>) was active only against <i>Enterococcus faecium</i>

    Branching fraction and CP asymmetries of B0→KS0KS0KS0

    Get PDF
    We present measurements of the branching fraction and time-dependent CP-violating asymmetries in B0→K0SK0SK0S decays based on 227×106 ΄(4S)→BB decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. We obtain a branching fraction of (6.9+0.9−0.8±0.6)×10−6, and CP asymmetries C=−0.34+0.28−0.25±0.05 and S=−0.71+0.38−0.32±0.04, where the first uncertainties are statistical and the second systematic

    Consensus guidelines for the detection of immunogenic cell death

    No full text
    Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine
    corecore