16 research outputs found

    Effect of intermittent fasting on circulating inflammatory markers in obesity: A review of human trials

    Get PDF
    Obesity is associated with low-grade inflammation. Weight loss, by means of dietary restriction, has been shown to reduce systemic inflammation. Intermittent fasting has recently gained popularity as a weight loss diet, but its effects on inflammatory markers in individuals with obesity have yet to be summarized. Accordingly, this review examined how the two main forms of intermittent fasting, i.e., time restricted eating (TRE) and alternate day fasting (ADF), impact body weight and key circulating inflammatory markers (i.e., C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6)), in adults with obesity. Results from this review reveal that TRE with various eating window durations (4–10 h per day) has no effect on circulating levels of CRP, TNF-alpha or IL-6, with 1–5% weight loss. As for ADF, reductions in CRP concentrations were noted when >6% weight loss was achieved. However, ADF had no effect on TNF-alpha or IL-6 concentrations, with this degree of weight loss. Thus, intermittent fasting has little or no effect on key inflammatory markers, but more research is warranted to confirm these preliminary findings

    The ocean sampling day consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits

    Distribution and Phylogeny of EFL and EF-1α in Euglenozoa Suggest Ancestral Co-Occurrence Followed by Differential Loss

    Get PDF
    BACKGROUND: The eukaryotic elongation factor EF-1alpha (also known as EF1A) catalyzes aminoacyl-tRNA binding by the ribosome during translation. Homologs of this essential protein occur in all domains of life, and it was previously thought to be ubiquitous in eukaryotes. Recently, however, a number of eukaryotes were found to lack EF-1alpha and instead encode a related protein called EFL (for EF-Like). EFL-encoding organisms are scattered widely across the tree of eukaryotes, and all have close relatives that encode EF-1alpha. This intriguingly complex distribution has been attributed to multiple lateral transfers because EFL's near mutual exclusivity with EF-1alpha makes an extended period of co-occurrence seem unlikely. However, differential loss may play a role in EFL evolution, and this possibility has been less widely discussed. METHODOLOGY/PRINCIPAL FINDINGS: We have undertaken an EST- and PCR-based survey to determine the distribution of these two proteins in a previously under-sampled group, the Euglenozoa. EF-1alpha was found to be widespread and monophyletic, suggesting it is ancestral in this group. EFL was found in some species belonging to each of the three euglenozoan lineages, diplonemids, kinetoplastids, and euglenids. CONCLUSIONS/SIGNIFICANCE: Interestingly, the kinetoplastid EFL sequences are specifically related despite the fact that the lineages in which they are found are not sisters to one another, suggesting that EFL and EF-1alpha co-occurred in an early ancestor of kinetoplastids. This represents the strongest phylogenetic evidence to date that differential loss has contributed to the complex distribution of EFL and EF-1alpha

    Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As a major component of plant cell wall, lignin plays important roles in mechanical support, water transport, and stress responses. As the main cause for the recalcitrance of plant cell wall, lignin modification has been a major task for bioenergy feedstock improvement. The study of the evolution and function of lignin biosynthesis genes thus has two-fold implications. First, the lignin biosynthesis pathway provides an excellent model to study the coordinative evolution of a biochemical pathway in plants. Second, understanding the function and evolution of lignin biosynthesis genes will guide us to develop better strategies for bioenergy feedstock improvement.</p> <p>Results</p> <p>We analyzed lignin biosynthesis genes from fourteen plant species and one symbiotic fungal species. Comprehensive comparative genome analysis was carried out to study the distribution, relatedness, and family expansion of the lignin biosynthesis genes across the plant kingdom. In addition, we also analyzed the comparative synteny map between rice and sorghum to study the evolution of lignin biosynthesis genes within the <it>Poaceae </it>family and the chromosome evolution between the two species. Comprehensive lignin biosynthesis gene expression analysis was performed in rice, poplar and <it>Arabidopsis</it>. The representative data from rice indicates that different fates of gene duplications exist for lignin biosynthesis genes. In addition, we also carried out the biomass composition analysis of nine <it>Arabidopsis </it>mutants with both MBMS analysis and traditional wet chemistry methods. The results were analyzed together with the genomics analysis.</p> <p>Conclusion</p> <p>The research revealed that, among the species analyzed, the complete lignin biosynthesis pathway first appeared in moss; the pathway is absent in green algae. The expansion of lignin biosynthesis gene families correlates with substrate diversity. In addition, we found that the expansion of the gene families mostly occurred after the divergence of monocots and dicots, with the exception of the C4H gene family. Gene expression analysis revealed different fates of gene duplications, largely confirming plants are tolerant to gene dosage effects. The rapid expansion of lignin biosynthesis genes indicated that the translation of transgenic lignin modification strategies from model species to bioenergy feedstock might only be successful between the closely relevant species within the same family.</p

    The Ocean Sampling Day Consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits

    Alternate Day Fasting Combined with Exercise for the Treatment of Non-Alcoholic Fatty Liver Disease

    No full text
    Innovative non-pharmacological lifestyle strategies to treat non-alcoholic fatty liver disease (NAFLD) are critically needed. This study compared the effects of alternate day fasting (ADF) combined with exercise, to fasting alone, and exercise alone, on intrahepatic triglyceride content (IHTG). Adults with NAFLD (n = 80) were randomized to 1 of 4 groups for 3 months: combination of ADF (600 kcal “fast day”; ad libitum intake “feast day”) and moderate-intensity aerobic exercise (5 session per week, 60 min/session); ADF alone; exercise alone; or a no-intervention control group. By month 3, IHTG was significantly reduced in the combination group (-5.48%; 95% CI, -7.77 to -3.18), compared to the exercise group (-1.30%; 95% CI, -3.80 to 1.20; P = 0.02) and the control group (-0.17%; 95% CI, -2.17 to 1.83; P < 0.01), but was not significantly different versus the ADF group (-2.25%; 95% CI, -4.46 to -0.04; P = 0.05). Body weight, fat mass, waist circumference, and ALT significantly decreased, while insulin sensitivity significantly increased, in the combination group compared to the control group. Changes in lean mass, AST, HbA1c, blood pressure, and plasma lipids remained unchanged. Combining intermittent fasting with exercise is effective for reducing hepatic steatosis in patients with NAFLD but may offer no additional benefit versus fasting alone. These results still require confirmation by a larger-scale randomized control trial

    Alternate Day Fasting Combined with a Low Carbohydrate Diet: Effect on Sleep Quality, Duration, Insomnia Severity and Risk of Obstructive Sleep Apnea in Adults with Obesity

    No full text
    Background: Alternate day fasting combined with a low carbohydrate diet (ADF-LC) is an effective weight loss regimen. Whether the weight loss induced by ADF-LC can improve sleep, remains unknown. Objective: This study examined the effect an ADF-LC diet on sleep quality, duration, insomnia severity and the risk of obstructive sleep apnea. Methods: Adults with obesity (n = 31) participated in ADF (600 kcal &ldquo;fast day&rdquo;; ad libitum intake &ldquo;feast day&rdquo;) with a low-carbohydrate diet (30% carbohydrates, 35% protein, and 35% fat). The 6-month trial consisted of a 3-month weight loss period followed by a 3-month weight maintenance period. Results: Reductions in body weight (&minus;5 &plusmn; 1 kg, p &lt; 0.001) and fat mass (&minus;4 &plusmn; 1 kg, p &lt; 0.01) were noted during the weight loss period, and these reductions were sustained during the weight maintenance period. Lean mass and visceral fat remained unchanged. The Pittsburgh Sleep Quality Index (PSQI) score indicated poor sleep quality at baseline (6.4 &plusmn; 0.7) with no change by month 3 or 6, versus baseline. ISI score indicated subthreshold insomnia at baseline (8.5 &plusmn; 1.0), with no change by month 3 or 6, versus baseline. The percent of subjects with high risk of obstructive sleep apnea at baseline was 45%, with no change by month 3 or 6. Wake time, bedtime, and sleep duration remained unchanged. Conclusion: The ADF-LC diet does not impact sleep quality, duration, insomnia severity or the risk of obstructive sleep apnea in adults with obesity

    Protocol for measuring intrahepatic triglyceride content in adults with non-alcohol fatty liver disease

    No full text
    Summary: Here, we present a protocol for conducting magnetic resonance imaging proton density fat fraction (MRI-PDFF) to measure intrahepatic triglyceride (IHTG) content in adults with non-alcohol fatty liver disease (NAFLD). We describe steps for screening patients for NAFLD, MRI-PDFF scanning, and using MRI-PDFF data to quantify IHTG. This protocol can be repeated sequentially and used in weight loss trials. However, it is limited to patients with NAFLD as it does not assess non-alcoholic steatohepatitis or hepatic fibrosis.For complete details on the use and execution of this protocol, please refer to Ezpeleta et al. (2023).1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics

    Effect of Intermittent Fasting on Reproductive Hormone Levels in Females and Males: A Review of Human Trials

    No full text
    Intermittent fasting is a popular diet for weight loss, but concerns have been raised regarding the effects of fasting on the reproductive health of women and men. Accordingly, we conducted this literature review to clarify the effects of fasting on reproductive hormone levels in humans. Our results suggest that intermittent fasting decreases androgen markers (i.e., testosterone and the free androgen index (FAI)) while increasing sex hormone-binding globulin (SHBG) levels in premenopausal females with obesity. This effect was more likely to occur when food consumption was confined to earlier in the day (eating all food before 4 pm). In contrast, fasting did not have any effect on estrogen, gonadotropins, or prolactin levels in women. As for men, intermittent fasting reduced testosterone levels in lean, physically active, young males, but it did not affect SHBG concentrations. Interestingly, muscle mass and muscular strength were not negatively affected by these reductions in testosterone. In interpreting these findings, it is important to note that very few studies have been conducted on this topic. Thus, it is difficult to draw solid conclusions at present. From the limited data presented here, it is possible that intermittent fasting may decrease androgen markers in both genders. If this is the case, these results would have varied health implications. On the one hand, fasting may prove to be a valuable tool for treating hyperandrogenism in females with polycystic ovarian syndrome (PCOS) by improving menstruation and fertility. On the other hand, fasting may be shown to decrease androgens among males, which could negatively affect metabolic health and libido. More research is warranted to confirm these preliminary findings
    corecore