141 research outputs found

    Reforming Urban Public Education Systems

    Get PDF
    Looks at unifying themes and goals for systemic school reform, including how new ideas can be successfully incorporated into a political agenda, and factors that have inhibited the development of civic capacity to design and implement reforms

    Cooperation between public libraries and public schools

    Full text link
    Thesis (M.A.)--Boston University, 1931. This item was digitized by the Internet Archive

    Clifford B. Orr Correspondence

    Get PDF
    Entries include brief biographical information, a lengthy typed biography on personal stationery, and letters of correspondence from the Maine State Library

    Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment

    Get PDF
    International audienceDuring the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) substantial efforts were made to systematically assess the skill of Earth system models. One goal was to check how realistically representative marine biogeochemical tracer distributions could be reproduced by models. In routine assessments model historical hind-casts were compared with available modern biogeochemi-cal observations. However, these assessments considered neither how close modeled biogeochemical reservoirs were to equilibrium nor the sensitivity of model performance to initial conditions or to the spin-up protocols. Here, we explore how the large diversity in spin-up protocols used for marine biogeochemistry in CMIP5 Earth system models (ESMs) contributes to model-to-model differences in the simulated fields. We take advantage of a 500-year spin-up simulation of IPSL-CM5A-LR to quantify the influence of the spin-up protocol on model ability to reproduce relevant data fields. Amplification of biases in selected biogeochemical fields (O2, NO3, Alk-DIC) is assessed as a function of spin-up duration. We demonstrate that a relationship between spin-up duration and assessment metrics emerges from our model results and holds when confronted with a larger ensemble of CMIP5 models. This shows that drift has implications for performance assessment in addition to possibly aliasing estimates of climate change impact. Our study suggests that differences in spin-up protocols could explain a substantial part of model disparities, constituting a source of model-to-model uncertainty

    Crossing the Dripline to 11N Using Elastic Resonance Scattering

    Get PDF
    The level structure of the unbound nucleus 11N has been studied by 10C+p elastic resonance scattering in inverse geometry with the LISE3 spectrometer at GANIL, using a 10C beam with an energy of 9.0 MeV/u. An additional measurement was done at the A1200 spectrometer at MSU. The excitation function above the 10C+p threshold has been determined up to 5 MeV. A potential-model analysis revealed three resonance states at energies 1.27 (+0.18-0.05) MeV (Gamma=1.44 +-0.2 MeV), 2.01(+0.15-0.05) MeV, (Gamma=0.84 +-$0.2 MeV) and 3.75(+-0.05) MeV, (Gamma=0.60 +-0.05 MeV) with the spin-parity assignments I(pi) =1/2+, 1/2- and 5/2+, respectively. Hence, 11N is shown to have a ground state parity inversion completely analogous to its mirror partner, 11Be. A narrow resonance in the excitation function at 4.33 (+-0.05) MeV was also observed and assigned spin-parity 3/2-.Comment: 14 pages, 9 figures, twocolumn Accepted for publication in PR

    LLM3D: a log-linear modeling-based method to predict functional gene regulatory interactions from genome-wide expression data

    Get PDF
    All cellular processes are regulated by condition-specific and time-dependent interactions between transcription factors and their target genes. While in simple organisms, e.g. bacteria and yeast, a large amount of experimental data is available to support functional transcription regulatory interactions, in mammalian systems reconstruction of gene regulatory networks still heavily depends on the accurate prediction of transcription factor binding sites. Here, we present a new method, log-linear modeling of 3D contingency tables (LLM3D), to predict functional transcription factor binding sites. LLM3D combines gene expression data, gene ontology annotation and computationally predicted transcription factor binding sites in a single statistical analysis, and offers a methodological improvement over existing enrichment-based methods. We show that LLM3D successfully identifies novel transcriptional regulators of the yeast metabolic cycle, and correctly predicts key regulators of mouse embryonic stem cell self-renewal more accurately than existing enrichment-based methods. Moreover, in a clinically relevant in vivo injury model of mammalian neurons, LLM3D identified peroxisome proliferator-activated receptor γ (PPARγ) as a neuron-intrinsic transcriptional regulator of regenerative axon growth. In conclusion, LLM3D provides a significant improvement over existing methods in predicting functional transcription regulatory interactions in the absence of experimental transcription factor binding data

    Warming intensify CO2 flux and nutrient release from algal wrack subsidies on sandy beaches

    Get PDF
    Algal wrack subsidies underpin most of the food web structure of exposed sandy beaches and are responsible of important biogeochemical processes that link marine and terrestrial ecosystems. The response in decomposition of algal wrack deposits to global warming has not been studied in ocean-exposed sandy beaches to date. With this aim, passive open top chambers (OTCs) were used to increase soil temperature within the range predicted by the IPCC for western Europe (between 0.5 and 1.5 degrees C), following the hypothesis that the biogeochemical processing of macroalgal wrack subsidies would accelerate in response to temperature increase. The effect of temperature manipulation on three target substrates: fresh and aged macroalgae, and bare sand, was tested. Results indicated that a small warming (<0.5 degrees C) affected the wrack decomposition process through traceable increases in soil respiration through CO2 flux, inorganic nutrients within the interstitial environment (N and P), sediment organic contents measured through the amount of proteins and microbial pool through the total soil DNA. The different responses of soil variables in the studied substrates indicated that the decomposition stage of stranded macroalgae influences the biogeochemical processing of organic matter in sandy beaches. Thus, CO2 fluxes, releases of organic and inorganic nutrients and microbial activity intensify in aged wrack deposits. Our results predict that expected global warming will increase the release of inorganic nutrients to the coastal ocean by 30% for the N (21 Gg/year) and 5.9% for P (14 Gg/year); that increase for the flow of C to the atmosphere as CO2 was estimated in 8.2% (523 Gg/year). This study confirms the key role of sandy beaches in recycling ocean-derived organic matter, highlighting their sensitivity to a changing scenario of global warming that predicts significant increases in temperature over the next few decades.Peer reviewe

    Light interception principally drives the understory response to boxelder invasion in riparian forests

    Get PDF
    Since several decades, American boxelder (Acer negundo) is replacing white willow (Salix alba) riparian forests along southern European rivers. This study aims to evaluate the consequences of boxelder invasion on understory community in riparian areas. We determined the understory species richness, composition and biomass in boxelder and white willow stands located in three riparian forests, representative of three rivers with distinct hydrological regimes. We investigated correlation of these variables to soil moisture and particle size, main soil nutrient stocks, potential nitrification and denitrification, tree canopy cover and photosynthetic active radiation (PAR) at the ground level. A greenhouse experiment was then conducted to identify the causal factors responsible for changes in the understory. The effect of soil type, PAR level and water level on the growth and the biomass production of Urtica dioica were examined. A lower plant species richness and biomass, and a modification of community composition were observed for boxelder understory in all sites, regardless of their environmental characteristics. The strongest modification that follows boxelder invasion was the decline in U. dioica, the dominant species of the white willow forest understory. These differences were mainly correlated with a lower incident PAR under boxelder canopy. The greenhouse experiment identified PAR level as the main factor responsible for the changes in U. dioica stem number and biomass. Our results indicate that adult boxelder acts as an ecosystem engineer that decreases light availability. The opportunistic invasion by boxelder leads to important understory changes, which could alter riparian ecosystem functioning

    A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research

    Get PDF
    The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science

    High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison

    Get PDF
    The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO2, reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change
    corecore