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Abstract 

Algal wrack subsidies underpin most of the food web structure of exposed sandy beaches, 

and are responsible of important biogeochemical processes that link marine and terrestrial 

ecosystems. The response in decomposition of algal wrack deposits to global warming has 

not been studied in ocean exposed sandy beaches to date. With this aim, passive open top 

chambers (OTCs) were used to increase soil temperature within the range predicted by the 
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IPCC for western Europe (between 0.5 and 1.5 ºC), following the hypothesis that the 

biogeochemical processing of macroalgal wrack subsidies would accelerate in response to 

temperature increase. The effect of temperature manipulation on 3 target substrates: fresh and 

aged macroalgae, and bare sand, was tested. Results indicated that a small warming (< 0.5 

ºC) affected the wrack decomposition process through traceable increases in soil respiration 

through CO2 flux, inorganic nutrients within the interstitial environment (N and P), sediment 

organic contents measured through the amount of proteins and microbial pool through the 

total soil DNA. The different responses of soil variables in the studied substrates indicated 

that the decomposition stage of stranded macroalgae influences the biogeochemical 

processing of organic matter in sandy beaches. Thus, CO2 fluxes, releases of organic and 

inorganic nutrients and microbial activity intensify in aged wrack deposits. Our results 

predict that expected global warming will increase the release of inorganic nutrients to the 

coastal ocean by 30 % for the N (21 Gg y
-1

) and 5.9 % for P (14 Gg y
-1

); that increase for the 

flow of C to the atmosphere as CO2, was estimated in 8.2 % (523 Gg y
-1 

). This study 

confirms the key role of sandy beaches in recycling ocean derived organic matter, 

highlighting their sensitivity to a changing scenario of global warming that predicts 

significant increases in temperature over the next few decades. 

 

Key words: Wrack decay, Open top chambers, Nutrients, Organic enrichment, CO2, 

DNA, Global warming. 
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Introduction 

Accumulation of macroalgae and plant debris strandings, also known as wrack, is a 

common event in the intertidal sedimentary coastal rim, worldwide. These external inputs of 

allochthonous biomass derive from detached primary producers of the neighbouring 

ecosystems, such as seaweeds from rocky shores, and vascular plants from sea grasses and 

salt marsh areas (Griffiths et al., 1983; Colombini and Chelazzi, 2003; Dugan et al., 2003; 

Orr et al., 2005). The ecological influence of algal wrack is of relevance where a highly 

productive coastal environment (such as subtidal rocky shores) interfaces with and exports 

materials to the less productive sandy beaches, normally devoid of aquatic macrophytes 

(McLachlan & Brown, 2006). As subsidized environments, open coast sandy beaches are 

responsible for recycling variable amounts of heterogeneous allochthonous organic matter, 

which underpins most of the beach food web, both in the subtidal (Crawley et al., 2006), 

intertidal (Soares et al., 1997; Dugan et al., 2003; among others) or supratidal beach (Dugan 

et al., 2003; Lastra et al., 2008; Duarte et al., 2014; Ruiz-Delgado et al. 2017). Wrack 

subsidies strongly influence ecological features and functioning of the receiver ecosystem, 

boosting biodiversity and abundance of primary and secondary consumers (e.g. Ince et al., 

2007; Olabarria et al., 2007; Crawley et al., 2009; Spiller et al., 2010; Wilson & Wolkovich, 

2011).  

Algal wrack processing is the degradative sequence along which organic matter 

accumulated in the sediment from algal subsidies is recycled into inorganic nutrients and CO2 

through mineralization and respiration (Anschutz et al., 2009). Consumption is an initial and 

paramount pathway within the biological processing of wrack supplies to sandy shores; for 

example, stranded macroalgae in temperate latitudes sustain large populations of supratidal 

crustaceans and insects, which are frequently the most abundant taxa, comprising up to 90% 

of the beach macrofauna (Stenton-Dozey & Grifiths 1983; Dugan et al., 2003, Duarte et al. 
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2014, Ruiz-Delgado et al. 2015). Following deposition, macroalgal wrack starts to be 

fragmented, decomposed and mineralized by the beach macrofauna, meiofauna and bacteria 

(Koop et al., 1982; Mews et al., 2006; Coupland & McDonald, 2008; Salathe & Riera, 2012). 

Wrack processing at final stages seems to be dominated by bacterial activity (Hubas et al., 

2007), resulting in CO2 respiration and the release of inorganic nutrients (Buchsbaum et al., 

1991; Chapin et al., 2002; García-Robledo et al., 2008; Hardison et al., 2010). The efficiency 

of algal wrack in supporting the basic metabolism of the associated food web can be 

measured through the quantification of the CO2 fluxes and the inorganic N pool, as an index 

of the soil community respiration and mineralization (Coupland et al., 2007; McCulley et al., 

2004; Lützow & Kögel-Knabner, 2009; Berfurg & Friberg, 2012). The conversion of organic 

matter into inorganic nutrients is considered a key ecosystem service that connects algal 

wrack decay with primary producers and consumers (Catenazzi & Donnelly, 2007). Wrack 

deposits behave as a source of labile C and N, which enhances microbial biomass, sediment 

respiration and N mineralization (McCulley et al., 2004; Lomstein et al., 2006). Since 

beaches function as sea-land ecotone, the beach runoff can enhance the productivity of 

coastal waters through discharge with nitrate, nitrite, ammonia and phosphorous (Maier & 

Pregnall, 1990; Brooks et al., 2008; Dugan et al., 2011; Barreiro et al., 2011). Raised 

metabolism in beach cast can last for several weeks or months, depending on wrack 

characteristics and environmental conditions (Barreiro et al., 2011; Rossi et al., 2011).  

Physicochemical features of the organic source seem to be an influencing factor in 

controlling wrack processing within the interstitial environment (Hubas et al., 2007); for 

example, different species (Duarte et al., 2010) and between tissues variability within a single 

species of stranded macroalgae (Duarte et al., 2011) could prompt distinctive biogeochemical 

footprint, by being processed at different rates throughout the consumption pathway. 

Similarly, variability in nutritional value and/or habitat features provided by the physical 
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structure of the wrack, enclose distinct colonizing faunal assemblages in search for food and 

shelter (Buschmann, 1990; Rodil et al., 2008; Duarte et al., 2010). Within-species variability 

in the fate of wrack deposits also occurs when differences exist in the life history of the algal 

clump after detachment from the original substrate; e.g., decomposed macroalgae are 

consumed at a faster rate than when fresh (Lastra et al., 2015), which supports the hypothesis 

that the biogeochemistry of the algal wrack processing differs depending on the aging state of 

stranded material.  

Increase in temperature is a prominent aspect of the global climate change that is 

projected to accompany modifications in biogeochemistry and metabolism of the coastal 

ecosystems worldwide; functional shifts linked to climate change will include changes in 

productivity, nutrients cycling and food web dynamics, which could have a direct impact on 

ecosystem services from coastal habitats. Changes in soil respiration and carbon and nitrogen 

cycling are expected to occur as a consequence of the temperature increase (Norby et al., 

1997; Liboriussen et al., 2011; IPCC 2014 Synthesis Report); hence, it is predicted that 

warming will raise beach metabolism by speeding decomposition rate of algal deposits, the 

nutrient cycling and the CO2 emission (Coupland et al., 2007; Lützow & Kögel-Knabner, 

2009). Besides, warming will accelerate the processing of wrack deposits in sandy beaches 

by speeding the feeding rate of primary consumers, such as Talitrid amphipods and insects 

(Lastra et al., 2015; Duarte et al., 2010), with unpredicted cascading effect on trophic web 

structure (Dugan et al., 2003). Other stressors related with the global warming such as 

acidification and CO2 availability, is expected will have harmful effects on algal wrack 

consumption by affecting consumers behaviour or algal palatability (Poore et al., 2013; 

Duarte et al., 2016). 
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There is a lack of scientific contributions setting out to understand the biogeochemical 

processes involved in the decomposition of algal wrack deposits in a scenario of global 

warming. The most optimistic models associated with climate change predict an increase in 

temperature of ca. 0.5 to 1.5 ºC over the next few decades in western Europe, with an average 

rate of 0.1 ºC per decade (IPCC 2014 Synthesis Report). Thus, the principal issue in this 

study was to clarify potential consequences of global warming in the fate and processing of 

algal wrack subsidies in sandy beaches. Specifically, the effect of increasing temperature was 

assessed on: 1) the rate at which macroalgal decay occurs once stranded on the beach; 2) the 

amount of organic and inorganic nutrients release drained toward the sediment through the 

decomposition process; and 3) the CO2 fluxes associated with decomposition, as a proxy of 

the metabolic rate and biogeochemical activity. To fulfil these objectives, a field experiment 

was performed in one intermediate exposed sandy beach on the NW coast of Spain. Passive 

open top warming chambers (hereafter OTCs) were used to manipulate air and soil 

temperature by mimicking a greenhouse effect (Marion et al., 1997) on patches of 

macroalgae with different life histories (i.e. fresh vs. aged). OTCs have been extensively used 

in climate change and ecosystem functioning studies in terrestrial ecology (e.g. Sharkhuu et 

al., 2013 and references herein). Our experiment in field conditions represents an 

improvement in the design of manipulative field experiments aimed at understanding the 

biogeochemical links between beach metabolism, wrack subsidies and global warming at 

ecosystem level. 
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Materials and Methods 

Study site 

Experiments were conducted on Ladeira beach (42° 34’ 36’’ N, 9° 3’ 20’’ W), an exposed 

sandy beach about 2 km long and 130 m wide (low spring tide), located in the NW coast of 

Spain. This beach is backed by a large, active dune system and is characterized by a 

mesotidal range of ca. 3.5 m during spring tides. It harbours a diverse and variable 

macrophyte wrack supply, usually distributed in heterogeneous patches stranded along the 

drift line and in the upper beach, mainly composed of brown algaes Saccorhiza polyschides, 

Sargassum muticum and Cystoseira spp (Barreiro et al., 2011). Weather conditions 

correspond with a mild oceanic climate, with mean daily temperatures ranging between 7 and 

24 ºC throughout the year (www.meteogalicia.es). 

 

Baseline in wrack supply to the supratidal beach was estimated along a monthly sampling 

field work, carried out in Ladeira beach between March 2012 and March 2013; Wrack 

coverage was measured according to the method proposed by Dugan et al. (2003). 

Overlapped beach (m) was transformed into dry weight biomass (g) according to the linear 

the regression: Wrack biomass (g m
-1

 DW) = 108.3 x Coverture (m) + 20.41, obtained by 

Lastra et al. (2014). The baseline results on algal wrack coverture showed that 59 % (± 22) of 

the algal supplies received by the beach strand above the drift line, covering an average of 

12.5 % (±15) of the upper beach surface. This means that an average of 16.7 g m
-2

 dry weight 

of wrack deposits occupy the upper beach surface year round. 
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Pilot study 

A pilot study was performed in advance of the experiment setup in order to calibrate the 

warming effect of the OTCs; thus, 1 data logger was buried in the sand at 5 cm depth at each 

of 3 OTCs installed in bare sand areas; to control for temperature changes, 1 data logger was 

similarly buried at each of 3 in bare sand sites without OTCs. After 7 days, the mean 

temperature in the OTCs was 25.3 ºC (0.52), whereas that in the controls was 24.2 ºC 

(0.17). Temperature differences obtained were within the target range, and compatible with 

the temperature increase predicted by the IPCC for the next decades in the studied area (0.5 

to 1.5 ºC ) (IPCC 2014 Synthesis Report). 

 

Field study 

We designed a manipulative field experiment to test for temperature-induced changes in 

macroalgal wrack decay over time, resembling what occurs with stranded material between 

two consecutive spring tides. The blade-shaped brown macroalgae Saccorhiza polyschides 

(Lightfoot) Batters 1902 (hereafter, Saccorhiza) was used as the target species, for being the 

dominant stranded macroalgae during the study period and over the year cycle (Barreiro et 

al., 2011). Detached macroalgae from rocky bottoms can drift during variable periods of time 

in a broad range of states of decomposition before reaching the shore (Crawley & Hyndes, 

2007). Thus, as a proxy of what naturally occurs in exposed beaches, two different 

decomposition stages of Saccorhiza were tested in the experiments: 1) fresh fronds collected 

within the 24 h prior to the experiment setup; 2) aged fronds that were obtained by aging 

fresh Saccorhiza in the water column. Aged material was prepared similarly to Dethier et al., 

(2012) by holding 1 mm mesh bags loaded with 10 kg of fresh algae at 5 m depth during one 

week (n= 3). All the initial algal material was collected live from the neighbouring rocky 
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shore of the Toralla Marine Science Station of the University of Vigo (42º 12,07’ 05’’ N; 8º 

48,03’ 16’’ W). To homogenise the composition within each type of algal wrack, fronds were 

cut in fragments of 20 cm long (aprox.) and all the material was carefully mixed before 

experiment setup.  

The experiment started on 24th June 2014 and lasted until 14th July. Twelve cone-shaped 

open top passive warming chambers (OTC) made of compacted polycarbonate (light 

transmission > 90%; Makrolon® GP clear 099, Bayer Sheet Europe), measuring 1.1 m 

diameter at the bottom, 0.65 m at the top, 0.6 m in height and 1 mm thick (Figure 

1S_SuppInfo), were used to investigate the effect of temperature on biogeochemical 

processes associated with wrack decay.  

Experimental algal plots consisted of 4 circular patches (90 cm ) of fresh algal fronds 

and 4 of aged fronds, 3 Kg each, that were randomly distributed parallel to the shoreline at 

ca. +0.5 m in height above the drift line, as the upper limit of stranded material transportation 

by the swash at spring high tide (Figure 1S_SuppInfo). Algal amount used in the experiment 

mimicked the density of algal wrack deposits in the studied area during the summer period 

(Barreiro et al., 2011; Gómez et al., 2013). To control for the biogeochemical effect of the 

algal patches, 4 bare sand positions were also randomly included in the experimental stretch. 

Next, 12 OTC´s were positioned on top of each of the algal patches, both fresh and aged, and 

on the bare sand sites. Positions provided with OTCs were referred to as warmed treatments. 

The lower edge of the OTCs were lifted 10 cm above ground to allow for sediment 

movement to occur naturally, and to avoid screen effect of the chambers against the aeolian 

transportation of sand, that could have create artificial differences between treatments and 

control plots. To track for the temperature, one data logger ( 0.2 ºC accuracy; Onset 

Computer Corporation, Bourne, MA, USA) was buried at 5 cm deep in the sand, according to 
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McCulley et al., (2004), at the center of each of 2 plots (out of 4, chosen at random) of any 

treatment and control assay; temperatures were measured at synchronized intervals of 20 

minutes throughout the 20 days of the experiment time; with this, mean temperature and 

max-min range were calculated. Degree-days were estimated using the area under the curve 

of the daily average temperature (Jaki & Wolfsegger, 2009). Because of a technical failure, 

only one series of temperature was recorded on fresh algae under OTCs. 

To control for the warming effect obtained within the OTCs, algal patches of fresh and 

aged Saccorhiza (n= 4, 3 kg each) and bare sand, but without OTCs, were randomly included 

along the experiment stretch; these were referred to as un-warmed controls. All plots were 

placed 5 m apart each other, and their positions were marked with aluminum sticks inserted 

into the sand.  

To obtain values at the start of the experiment (t0), 4 algal patches of fresh, 4 aged 

Saccorhiza, 3 kg each and 90 cm , as well as 4 bare sand positions, were set in the 

surroundings and at the same tidal position of the experimental plots. CO2 fluxes in algae and 

bare sand plots (μM m
-2

 s
-1

) were measured by pushing vertically into the patches a 20 cm 

diameter accumulation chamber with infrared gas analyser (IRGA) of a WS1101 West 

Systems Portable Soil CO2 Flux Meter (Parkinson 1981); algae directly covered by the 

accumulation chamber were carefully removed and transported to the laboratory for further 

analyses of algal dry weight and total organic C, N and P. Next, 3 corers 3 cm diameter were 

pushed into the sediment till 5 cm depth (as done by Canion et al., 2014) in the area that was 

directly underneath the algae to analyse sediment granulometry, moisture, proteins and 

inorganic nutrients (NH4
+
, NO3

-
, NO2

-
 and PO4

-3
). Sediment corers were also collected to 

quantify total DNA, as an estimator of the microbial biomass within the sediment at the start 

of the experiment. All the samples were immediately frozen at -20 ºC until processing. 

Similarly, one 10 cm diameter corer to a depth of 10 cm was collected underneath any 
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fresh/aged algal patch and bare sand (n= 4 each) to evaluate initial macroinfauna; these 

samples were sieved with 1 mm mesh and the remnant was fixed with 70% ethanol and 

stored for species composition and abundance. 

On days 3, 7 and 20 of the experiment, each patch of fresh or aged algae and bare sand, 

either warmed or un-warmed, was sampled as above. CO2 data were obtained between 12:00 

and 14:00 at every sampling date; hence it was assumed that temperatures were maximum 

within the circadian cycle. To calibrate for the effect of the dial cycle of temperature in the 

CO2 emission, a parallel experiment was conducted where fluxes were measured in patches 

of 500 g of Saccorhiza deployed above the drift line, at different times: 7:30 a.m., 10:30 a.m., 

13:00 and 15:30, thus covering the full range of daily temperatures. Temperatures were 

minimum between 7:30 and 8:30, and reaching maximum after 14:00 at any date of the 

experiment (www.meteogalicia.es). Therefore, a correction factor of 0.77 was obtained to 

standardize for the CO2 emission at the mean temperature along the daily cycle. Due to 

logistic constrains, this study was conducted in a beach (Abra: 42º 09’ 11’’ N; 8º 49’ 53’’ W) 

in which algal wrack characteristics, sediment features (Barreiro et al. 2011) and weather 

conditions were similar to those existing in the study site where the OTC experiment was 

conducted. 

Meteorological information along the trials was supplied by the nearest neighbouring 

meteorological station located within the beach-dune system, 2.2 Km from the study site 

(www.meteogalicia.es).  
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Laboratory analyses 

Sediment mean grain size was estimated by dry sieving (Folk, 1980), and sediment 

moisture was determined by weight loss after drying at 60 ºC until constant weight (Giere et 

al., 1988). Total organic C and N of fresh and aged algal tissue at initial time t0 were 

measured with a LECO model CNS 2000; P was quantified by inductively coupled plasma 

optical emission spectrometry.  

 

The sediment samples (10 g aprox.) were shaken in the dark for 2 hours in 25 ml, 0.01 

mol/l KCl solution for inorganic N extraction; the solution was then centrifuged at 4600 rpm 

10 minutes and the filtered extract (quantitative filter paper of 2–4 µm) was stored at -20 ºC 

until processing (Barreiro et al., 2013). Nutrients were quantified by continuous flow analysis 

in a Bran Luebbe Nutrient Analyzer AA3. Ammonium was measured fluorometrically at 460 

nm following excitation at 370 nm following the method of Kerouel & Aminot (1997); the 

samples were reacted with ophthalaldehyde (OPA) at 75 °C in the presence of borate buffer 

and sodium sulphite, to form a fluorescent species in a quantity that is proportional to the 

ammonium concentration. NO2- and NO3- were analysed via the diazo-reaction based on the 

methods of Armstrong et al. (1967) and Grasshoff et al. (1983). This automated procedure 

involves reduction of NO2- to NO3- by a copper-cadmium reductor column; the NO2- then 

reacts with sulphanilamide and N-1-napthylethyleneidiamine dihydrochloride under acidic 

conditions; the concentration was determined colorimetrically at 550 nm. Nitrification 

products hereafter will be referred as the sum of NO2-+NO3- (as in Brooks et al., 2008), as 

concentrations were highly correlated (R
2
= 0.95, P< 0.0001). Total inorganic N (hereafter 

TIN) was calculated as the sum of NH4
+
, NO2- an NO3-. Phosphate analyses were based on 

the colorimetric method of Murphy & Riley (1962), in which a blue colour is formed by the 
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reaction of orthophosphate, molybdate ion and antimony ion followed by reduction with 

ascorbic acid at a pH of 1; the reduced blue phospho-molybdenum complex is determined 

colorimetrically at 880 nm.  

These analyses were carried out in the ‘‘Elemental Analysis Unit’’ of the University of 

Vigo. Data units for all the inorganic nutrients were in µM per g of dry sediment samples; 

nutrients on bare sand were also expressed per square metre (top 5 cm) by using averaged 

values per g of sediment throughout the experiment (n= 12) multiplied by the sample size 

(7.07 cm
2
, 44.1 g ± 4.4). To allow for comparison with studies where nutrient concentration 

were measured in pore water, data on µM g
-1

 of dry sand were transformed to µM, following 

Brooks et al. (2008), assuming 40% of saturation volume (Barreiro et al., 2013; Charbonniere 

et al., 2013) and a dilution factor of 1.77 (25 ml) accountable to the extraction method.  

Contents in total proteins were gauged as a proxy of the edible organic matter received by 

the beach system (Fabiano et al., 1995; Lastra et al., 2016). A more conventional method as 

dry-combustion in a CHN-LECO was not used in the calculation of sedimentary organic 

matter cause is based in the assumption that all carbon combusted is associated to organic 

matter, what means that the carbonated sediments will produce a strong interference when 

they are depleted in organic matter, as commonly occur in exposed sandy beaches. Total 

proteins were determined using the method of Lowry & Rosebrough (1951) modified by 

Markwell et al. (1978). Concentrations were referred as bovine serum albumin equivalents. 

Three g of sediment were used for the analyses of each sample. For each test, blanks were 

made using the same sediments previously treated in a muffle furnace (500 ºC 6 h). Protein 

concentrations were converted into carbon equivalents and total N using 0.85 (Simon & 

Azam, 1989) and 0.18 (Shuuluka et al., 2013) conversion factors, respectively. 
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The specific extraction kit "Quant-iT dsDNA Assay High Sensitivity” followed by Qubic 

Fluorometric Quantitation was used to quantify total DNA in the top-5 cm sediment, as a 

proxy of the bacterial and fungal communities contributing for the organic matter 

decomposition (Agnelli et al., 2004). Calculations were expressed as ng·g
-1

 of sediment. 

 

Data treatment 

Temperature data for each treatment and control did not accomplished with normality 

requirements; therefore, as measurements from data-loggers were synchronized, the non-

parametric Wilcoxon test for paired data was used to compare soil temperature obtained in 

the OTC treatments for each type of substrate (fresh algae, aged algae and bare sand) against 

the two corresponding controls. The change in water contents over time for fresh and aged 

Saccorhiza, both in controls and OTC treatments, served as a measure of intra-specific 

variability in wrack decomposition. Decomposition expressed as the water contents of algal 

patches was evaluated with a single exponential decay model (following Jędrzejczak, 2002): 

Wt = W0
e−kt

 where, Wt is the weight loss (%) of a given sample remaining after time (t). W0 

is the initial dry weight (g) of a given sample (i.e. t0); k is the decay coefficient (day
−1

) and t 

is the time (days). The decay coefficient (k) was used to compare decomposition rates 

between different treatments at each time interval.  

All the physicochemical variables were time scaled. Changes in the algal moisture, CO2 

fluxes, proteins, nutrients (Nitrites-Nitrates, Ammonia and Phosphates), total DNA and the 

wrack and sediment macrofauna (i.e. total abundance and species richness) over time, were 

analysed using a three-way ANOVA; decomposition state (fresh/aged algae and bare sand 

controls, 3 levels) and treatment (OTC´s vs. controls, 2 levels) were considered as orthogonal 

fixed factors, and time (3 levels) was considered a random factor. Student−Newman−Keul’s 
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test (SNK) was used for a posteriori comparisons of factors (p< 0.05). Contrasting across 

treatments/controls within substrates were performed through One-way ANOVA with a 

posteriori multiple comparisons Tukey test. The D’Agostino & Pearson test was used to 

examine for normality. The homogeneity of variances was evaluated with Cochran’s test. 

For the total soil respiration over the 20 days of experiment, the trapezoidal rule was used 

to calculate the area under the curve, following McCulley et al. (2004); since CO2 emissions 

were estimated in μM m
-2

 s
-1

, calculations were based on a sequence of 1728000 seconds. 

Total organic carbon to nitrogen ratio (C/N) of the initial tissues was calculated as an index 

of edibility of algal substrates used in the trials. Coupling between TIN and CO2 flux was 

examined through regression analyses.  

Increase in N-NH4
+

, N-NO3
-
+NO2

-
,
 
PO4

-3
, proteins and DNA concentration in the surface 

sediment was calculated through the bulk values per g
-1

 of sand subtracted by the 

corresponding values in bare sand, either treatments or controls. Recycling rates of N and P 

were obtained by dividing the maximum soil concentrations in N-NH4
+

, N-NO3-+NO2- and 

PO4
-3

 over the 20 days of experiment by the total N and P contents in the averaged biomass 

of algal patches at initial time (48.85 g ± 18.8 dry weight). The mean residence time of algal 

C was obtained by dividing the averaged bulk of organic C in the algal patches, by the total 

soil respiration over the 20 days of experiment, corrected by those rates measured in the 

corresponding bare sand treatment or control. As data from IRGA flux meter CO2 are devised 

per m
-2

, averaged algal biomass collected underneath the 20 cm Ø chamber (48.85 g dry 

weight) was extrapolated to m
2
 (=1555 g). 
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Results 

Mean temperatures in the sediment underneath the OTCs at the 3 target substrates studied 

were warmer than those measured in the control plots, and differences were significant: 

Wilcoxon test for paired data, P< 0.001 in all cases, except for one of the fresh algae plots 

with warm induced treatment, that was P= 0.07. Increases were as follows: +0.03 ºC for the 

fresh algae (0.14%), +0.33 ºC in aged algae (1.56%) and +0.13 ºC in bare sand (0.59%). The 

effect seems to be more conspicuous when calculations are formulated in degree-days (Table 

1), which results in increases of 1.64%, 1.23% and 1.45% for the fresh and aged patches and 

bare sand, respectively.  

Average sand moisture in plots with and without algae were 2.0 % (±1.7) and 1.44 % (± 

1.44), respectively, without statistical differences between warming-induced plots and 

controls. The interaction between treatment and algal substrates was significant, which means 

that the three substrates behave unequally; e.g. sand moisture under fresh algae was higher in 

control plots than under the chambers (ANOVA: Treatment x Substrate interaction, F2,54= 

8.04; P< 0.001; SNK test: P< 0.01); however, sediment under aged wrack was dryer under 

controls than in OTCs patches (ANOVA: Treatment x Substrate interaction, F2, 54= 8.04; P< 

0.001; SNK test P< 0.01). Moisture in bare sand under OTCs and in the control plots was 

always similar (SNK test P> 0.05). Maximum sediment moisture was measured at day 9 of 

the experiment (t2), reproducing the pluviosity and water balance reported from the nearby 

meteo station. Negative water balance occurred in the field throughout the experiment, except 

for days 3, 5 and 10 (www.meteogalicia.es); thus, water loss was the prevailing state, hence 

depleting moisture of the sediment and wrack patches.  
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Water contents of fresh and aged Saccorhiza at the start of the experiment were 90.4 ± 

0.2% and 91.3 ± 0.3 %, respectively. Decomposition rate (i.e. K, Day
 -1

) indicated that 

maximum weight loss by dehydration was observed at day 3 (t1) for all the treatments and 

controls (Figure 2S_SuppInfo), with values ranging between 0.48 (fresh algae under OTC) to 

0.72 (aged algae in controls). Desiccation continued at a rate of 0.15 % day
-1

 during the final 

stages of the experiment. Water contents of the algal tissues under OTCs were higher than 

those measured in the control plots (ANOVA: Treatment, F1, 48 = 7.36, P< 0.01). Changes in 

mean dry weight (DW, %) of the fresh algae occur according to the formulas: DW= 1.33 e
-

0.24 t
 and DW= 0.74 e

-0.18 t
 in the controls and warm induced plots, respectively; whereas those 

for the aged patches were DW= 1.1 e
-0.16 t

 and DW= 0.81 e
-0.16 t

 for the controls and OTC 

plots, respectively (Figure 2S_SuppInfo). Difference in moisture between algal tissues of 

fresh vs. aged Saccorhiza was not significant (ANOVA: Substrate, F1, 48 = 1.52, P= 0.22), 

neither the desiccation trend over time (ANOVA: Treatment x Substrate x Time interaction, 

F3, 48 = 0.3, P= 0.82). 

Total inorganic N (TIN) in the sediment underneath the OTCs was higher than that in the 

control sites, although differences were statistically significant only when comparing 

treatment vs. control of aged macroalgae (Figure 3S_SuppInfo) (ANOVA: Treatment x 

Substrate interaction, F2, 54 = 0.98, P= 0.38, SNK test P< 0.05). The TIN measured in the 

sediment below the aged Saccorhiza was higher than that under fresh algaes, and this occurs 

both when comparing OTC plots or controls (SNK test P< 0.05 in both cases). Total N in the 

tissues of the fresh and aged Saccorhiza at the start of the experiment were 1.85 % ± 0.06 and 

2.22 % ± 0.2, respectively, which is within the range measured in similar species of 

Phaeophyceae (Gevaert et al., 2001). Results indicate that 0.3 % (55 µg g
-1

 of alga) of the 

total N initially confined in the fresh algae in the control plots, and 0.45 % (83 µg g
-1

 of alga) 

of that in warmed sites were mineralized as TIN and transferred to the sediment throughout 
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the experiment. Aged algae leached 0.79 % (176 µg g
-1

 of alga) and 0.99 % (220 µg g
-1

 of 

alga) of their total N as TIN to the sediment, for the control and OTC plots, respectively. 

Maximum increases of TIN in the sediment were always observed at the end of the 

experiment time, t3 (20 days), except for fresh algae in OTC plots that was at t2 (7 days). 

Warming through OTCs increased in 13.2 % the average amount of NH4
+
 in plots with 

fresh macroalgae, and in 26 % of that in aged patches, although these increases were not 

statistically significant (Fig. 1a). Averaged amount in NH4
+
 in the sediment of the bare sand 

throughout the experiment was lower than that under algal patches, although differences were 

only significant when comparing with warm induced patches of fresh algae or aged deposits 

(see Fig. 1a for details). Averaged NH4+ concentration in samples of bare sand was 3.2 ± 1.5 

µM g-1 of sand in control plots; that for the heated sites was 2.5 ± 1.3 µM g
-1 

of sand; these 

values correspond with a interstitial water concentration of 56 ± 26 µM and 44 ± 23 µM. 

Warming also triggered an increase of 24 % and 35 % in NO2-+NO3- in sand under fresh and 

aged macroalgae, respectively (Fig. 1b).  

Mean NO2-+NO3- in bare sand was 7 ± 3.3 µM and 8.3 ± 4.6 µM for control and OTC 

plots respectively, which is equivalent to 124 ± 58 µM and 146 ± 81 µM in the interstitial 

water. There were no differences in NO2-+NO3- between sand samples from bare sand areas 

and those under patches of fresh algae (Fig. 1b); NO2-+NO3- below aged algae roughly 

duplicate the values obtained in bare sand, albeit differences were only significant when 

comparing aged algae under OTCs and control patches of bare sand (One way ANOVA, F5, 66 

= 3.57; Tukey HSD test, P< 0.05). Variability in time showed that increases in soil NH4
+ 

peaked at the 9
th

 day for all the substrates and treatments (Fig. 2a). Maximum increases in 

NO2- + NO3- in the sediment occurred at the end of the experiment (i.e. 20 days), except 

under fresh algae in warm-induced plots (Fig. 2b). 
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Warming seems to deplete leaching of PO4
-3

 in fresh algal plots, whereas it increased in 

those of aged macroalgae (ANOVA: Treatment x Substrate interaction, F2,54 = 5.06, P<0.01, 

SNK test: P< 0.01), and has no effect on bare sand plots (Fig. 1c, Fig. 2c). Total P within the 

tissues of fresh and aged Saccorhiza at initial time were 2.71 % and 1.85 %, respectively; 

after 20 days of experiment, 2.29 % (619 µM g
-1

 of alga) of the total PO4
-3

 of the fresh algae 

in the control plots, and 0.78 % (619 µg g
-1

 of alga) of that under OTCs were transferred to 

the sediment. In aged algae, 2.3 % (425 µM g
-1

 of alga) of the PO4
-3

 in the control samples, 

and 5.1 % (942 µM g
-1

 of alga) of that in warmed sites, was released to the substrate. 

Mean value of sediment organic N under control patches of fresh algae was 20.9 µM g
-1 

(± 4.9), whereas that under OTCs was 22.2 µM g
-1 

(± 4) (Figure 4S_SuppInfo). In aged algae, 

organic N under control patches was 22 µM g
-1 

(± 4.6), with that in warm-induced plots 

reaching to 37.9 µM g
-1 

(± 12.7). Values in bare sand were 15.2 µM g
-1 

(± 2.5) and 18.5 µM 

g
-1 

(± 6.8), what means 0.95 M m
-2

 (± 0.4) and 1.16 M m
-2

 (± 0.5) in control and OTC sites, 

respectively. Sediment organic N in bare sand plots were equivalent to 457 µM (± 192) and 

555 µM (± 247) in interstitial water, for the control and OTC plots, respectively. Averaged 

amount in organic N in the sediment throughout the experiment was not statistically different 

across treatments and substrates (Figure 4S_SuppInfo), except for the patches of aged algae 

under OTCs when compared with control patches of bare sand (One way ANOVA, F5, 66 = 

2.31; P= 0.053 Tukey HSD test, P< 0.05). 

Fresh algae, either control or warmed, released as much as 2 % of their total N initially 

confined in their tissues, as organic N toward the sediment, which represents 377 µM and 

372 µM per g of alga for control and OTC plots, respectively. Aged algae leached 2 % and 

4.7 % of their total N as organic N to the sediment, what in this cases means 448 µM g
-1

 of 

algae and 1053 µM g
-1

 of algae for the control and OTC plots, respectively.  
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Organic N and TIN in the sediment increased under patches of algae until day 9; then, 

organic N decreased whilst TIN increased, what indicates an active mineralization. This trend 

was particularly conspicuous in the sediment under aged algae, in which TIN after 20 days of 

experiment accounted for 62 % and 61 % of the total N in the controls and warmed plots, 

respectively (Figure 3S_SuppInfo). For the controls plots of aged algae, time variability in 

TIN involves mineralization rates of 2.15 µM d
-1

 g
-1

 of sediment between days 3 and 9, and 

0.5 µM d
-1

 g
-1

 between days 9 and 20. Calculation in warm-induced conditions results in 

mineralization rates of 1.12 µM d
-1

 g
-1

 between days 3 and 9, and 1.16 µM d
-1

 g
-1

 between 

days 9 and 20. 

Initial total organic carbon contents in the tissues of fresh and aged Saccorhiza were 25.6 

% and 30.8 % respectively, without differences in C:N ratio (14.39 in both cases; t-test= 

0.004, P= 0.99). Mean sediment organic C over the 20 days of experiment in control plots of 

fresh algae was 98 µM g
-1

 (± 34), whereas that under warming-induced plots was 104 µM g
-1

 

(± 35). Mean organic C in sediment was 102 µM g
-1

 (± 35) under control patches of aged 

algae, with those in warm-induced plots reaching to 167 µM g
-1

 (± 91.1). Values in bare sand 

were 76 µM g
-1

 (± 16) and 84 (± 39), what means 5.1 M m
-2

 (± 2.1) and 6.2 M m
-2

 (± 2.7) in 

control and OTC sites, respectively. There were no statistical differences in organic contents 

in the sediment across treatments and controls (One way ANOVA, F5, 66 = 1.1; P= 0.37).  

Warm-induced plots emitted larger volumes of CO2 than the controls, but differences 

were not significant for any of the substrates assayed (Fig. 3). CO2 fluxes from aged algae 

were larger than those from fresh algae, and differences were significant (One way ANOVA, 

F5, 90 = 7.16, P< 0.001, Tukey HSD test, P< 0.05 in all the cases).  

Patches of algae, either fresh or aged, released larger volume of CO2 than bare sand plots 

(Fig. 3), although only values from aged algae were significantly different (Tukey HSD test, 
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P< 0.01 in all the cases). Decomposed algal patches released more than 50 % of CO2 within 

the first 3 days; the decline in water contents of the algal tissues was concurrent with the 

abrupt drop in CO2 emission after the third day. Averaged CO2 emission from fresh algal 

plots increased 7 % when heated under the OTCs (Fig. 3). When measuring in plots with 

aged algae, warming caused an increase of 8.2 % in the CO2 flux toward the atmosphere. The 

results indicate that 0.6 % of the organic C stored in the fresh algaes in control plots (i.e. 

1600 μM C g
-1

 of algae) and 0.65 % of that in warmed plots (i.e. 1724 μM C g
-1

 of algae) was 

respired as CO2 along the 20 days of experiment. Warming increased in 17 % the flux of 

organic C of aged algae, from 3070 μM C g
-1

 of algae (1.5 % of the stored C) in control plots, 

to 3594 μM C g
-1

 (1.81 % of the stored C) under OTCs. Bare sand from treatment and control 

patches released less CO2 than plots covered with algae (Fig. 3), albeit differences were only 

significant when comparing with aged algae (Fig. 3) (One way ANOVA: F5, 90= 7.16; P< 

0.001, SNK test P< 0.01 in all cases). Warming treatment also triggered a 13% increase in 

CO2 flux of the bare sand beach surface, which means that raised from 3.13 to 3.54 mM m
-2

 

day
-1

 on average throughout the experiment time.  

CO2 flux and TIN were related according to the formula CO2= 0.1 + 0.19 log TIN, R
2
= 

0.86; P< 0.001 (Fig. 4). 

Total DNA in the sediment increased over time during the decomposition process (Fig. 

5). There were not significant differences in DNA when comparing sediment from OTCs and 

control plots (One way ANOVA: F3, 44= 0.35, P= 0.78, Tukey test P> 0.05 in all cases). 

Averaged DNA concentration in the sediment under fresh patches of alga was 6.2 ng DNA g
-

1
 (± 4.3), whereas that under OTCs was 6.9 ng g

-1
 (± 5.8). The mean estimate of DNA under 

aged wrack in control patches was 8.5 ng g
-1

 of sediment (± 6.6), while that under OTCs was 

7.3 ng g
-1

 (± 4). Mean contents in DNA in the sediment below fresh algae were 2.43 ng DNA 

g
-1

 (± 2.46), and 4 ng DNA g
-1

 (± 4.9) in warm induced plots and in the controls, respectively. 
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Those values for aged algae were 4.1 ng DNA g
-1

 (± 4.2) and 4.1 ng DNA g
-1

 (± 3.6) in OTC 

plots and in the controls, respectively.  

The DNA in the sediment under patches made of fresh algae increased constantly over 

time (Fig. 5a), while DNA in the sediment under aged patches peaked at day 9 (t2), with no 

further significant change (Fig. 5b). Averaged soil DNA in control bare sand areas was 3.1 ng 

g
-1

 of sediment (± 2.8), which, in warm-induced plots, was 2.2 ng g
-1

 (± 0.8). There were 

significant differences between sediment DNA underneath fresh and aged macroalgae and 

bare sand, (ANOVA: Substrate, F2,54= 14.13; P< 0.001), as follows: aged algae = fresh algae 

< bare sand (Figure 5S_SuppInfo).  

There were not statistical differences in beach macrofauna across treatments and 

substrates. The low number of individuals collected (n= 31 in total) prevented to obtain any 

conclusion on the effect of macrofaunal assemblages on the algal wrack processing. The 

coleopteran Phaleria cadaverina (Frabicius, 1792) (n= 10) and the Oniscidea isopod Tylos 

europaeus Arcangeli, 1938 (n= 10) were the most abundant species collected (n= 10).  

 

Discussion 

The results of this study indicate that open top chambers are suitable for conducting 

manipulative experiments addressed to evaluate the effect of short scale temperature increase 

on wrack metabolism in the un-moistured sediment of the supratidal beach. Sediment 

temperatures in plots provided with OTCs were warmer than those in control plots; the mean 

temperatures and degree days inside and outside of the OTCs were consistent and aligned 

with the experiment goals. Minimum daily temperatures seem to be buffered under the 

chambers, i.e. the mean of the lowest daily temperatures in the sediment were obtained in 
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control sites. The mechanism underlying this trend is unknown, but however, we hypothesize 

that OTCs, besides providing green house effect during day-light, can reduce heat loses 

during low temperature night-hours (Bokhorst et al., 2013). Short scale variability in 

temperatures along the study site can be related with local variability in the wind conditions, 

what could have affected differently to the different plots along the transect where the 

experiment was conducted. Similarly, the lower rim of the OTCs was 10 cm uplifted to allow 

for aeolian transportation of sand, and to avoid screen effect of the chambers; thus, 

differential, albeit natural, sediment accretion/erosion on top of the plots could lead to an 

unpredicted effect on the temperatures underneath the sediment.  

Despite the short differences in sediment temperatures between warm-induced plots and 

controls (see Table 1), the response of the studied variables was significant in a number of 

cases. Warming accelerated soil metabolism by speeding the bacterial activity (Spilmont et 

al., 2005). Contribution of beach macrofauna to decomposition process of algal wrack 

through fragmentation and consumption (Hammann & Zimmer, 2014) was negligible, taking 

into account the small number of herbivore individuals collected in any substrate, either 

treatment or control. Besides temperature, the decaying stage of the algal patches determined 

the biogeochemical fate of the wrack biomass, meaning that aged algae delivered larger 

decomposition outputs, compared with those from fresh algal patches. The transformation of 

organic matter into inorganic nutrient that fertilize the coastal waters is considered an 

important ecosystem service of exposed sandy beaches (Schlacher et al., 2013, 2015); wrack 

processing implements a substantial feed back that connects high productive macrophyte 

based environments, such as rocky shores, with the low productive neighbouring sandy 

shores (Barreiro et al., 2013). The degradative pathway for mineralizing organic matter and 

the consequent nutrient release to the interstitial environment was enhanced in the OTC sites. 

Nitrification of NH4
+ 

to NO2
-
+NO3

–
 occurred rapidly under OTCs and in aged algae (less than 
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3 days). However, nitrification in patches of fresh Saccorhiza at ambience temperature seems 

to be initially buffered, as only NH4+ and no NO2-+NO3- were measured after 3 days of 

decay. Ammonia could directly leach to the sediment from intracellular pools, since 

macroalgae accumulate this nutrient in large concentrations, (Corzo & Niell, 1991; Boyer & 

Fong 2005; García Robledo et al., 2008). There was no pluviosity recorded during the first 3 

days of the experiment, and therefore, nutrients percolated into the sediment column by 

gravity without dilution. Peaks of ammonia were measured after 9 days, then decreased while 

NO2-+NO3- increased. The mineralization process with increasing TIN while decreasing 

organic N was conspicuous in aged algae in warm environment; the effect of the initial state 

of the aged algal patches in activating the inorganic N and P output can indicate that 

breakable cell structure of decomposed tissues and the rapid loss in deterrent molecules, such 

as phenolic compounds, facilitated a rapid use of the decomposed algal tissues by beach 

microbiota (Buchsbaum et al., 1991). This pattern has already been observed on beach 

macrofaunal herbivores, which feed preferentially on algae that have undergone several days 

of previous decay (Lastra et al., 2015).  

Few studies have been published to date providing detailed information on the beach 

metabolism and the nutrients dynamics of the dry sediments from the supratidal beach. 

Wrack deposits stranded at the higher tidal level in spring tides remain during several weeks 

or months on the sand surface (Rodil et al., 2008), thus being exposed to meteorology, 

including desiccation, overheating, freezing, radiation, etc (Orr et al., 2005). Moisture either 

in the organic deposits or in the substrate, determines the rates at which bacterial 

mineralization and nitrification operates (McCulley et al., 2004, 2007; Hollister et al., 2006). 

The results showed that metabolic rates throughout the decay process measured as CO2 

emission decline with the decrease in the humidity of the deposits. Sand moisture during the 

experiment was always below 3%, whereas water contents of the algal biomass dropped from 
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90 % to 20 % after day 3 for all the treatments and controls; hence, reduced decay rates of 

algal tissues obtained after t1 were related with an algal breakdown buffered by desiccation. 

The amount of algal C and N liberated in our experiment was small (ca. 3 % and 1.8% 

respectively) compared with what occurs in saturated sediments, where up to 6.4% and 35% 

of algal C and N respectively enrich the sediment after a time span similar to that in our assay 

(Hardison et al., 2010). Likewise, our results were below the values obtained when decay 

occurs in the water column, where more than 40% of macroalgae biomass is released to the 

environment (Duarte & Cebrian, 1996; Kristensen, 1994; Wada et al., 2007). When 

comparing with NO2-+NO3- in the pore-water, our data indicates that concentration in the 

upper beach bare sand (124 µM) was higher than those obtained in the intertidal beach by 

Brooks et al., (2008), who reported yearly average values of 3.9 µM; values were also higher 

than those in pore water measured by Charbonniere et al., (2013) and Barreiro et al., (2013) 

in two monitoring studies of the intertidal zone in beaches on the French and Spanish Atlantic 

coast (17.4 µM and 14.1 µM, respectively). In contrast, our results were below values 

obtained in beaches that receive massive macrophytes subsidies along the year, as those 

along the Californian coast (Dugan et al., 2011), where intertidal pore water range between 6 

and above 10000 µM of TIN.  

The long residence time of algal wrack after stranding during spring high tides, the rapid 

desiccation of algal tissues as well as the low moisture of superficial sediment, could be 

responsible for an accretion of recalcitrant algal debris in the upper beach. As a result, a 

significant amount of nutrients are stored in the supratidal zone, where only spring high tides, 

storms and pluviosity could contribute to accelerate soil metabolism. In the tidally affected 

beach, a short turnover rate determines the low organic contents of the beach sands (Anschutz 

et al., 2009). Bacterial mineralization of the organic matter from wrack supplies occurs at 

accelerated rates, with inorganic N being used rapidly by primary producers (preferring NO3-
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) and bacteria (preferring NH4+) (Brooks et al., 2008; García Robledo et al., 2008). There is a 

lack of information about the proportion of fresh vs. aged state of wrack subsidies received 

by exposed sandy beaches. Studies on turnover rate are scarce, but some calculations 

demonstrate replacement rates as high as 56 ± 18% (Lastra et al., 2014) of wrack supplies 

within a 24 hours cycle; thus, a proportion of 50/50 % in fresh vs. aged material reaching the 

beach can be assumed. According to the calculations of the baseline study, the average algal 

wrack biomass of 16.7 g m
-2

 (dry weight) on the upper beach zone year round, means that 

0.024 M m
-2

 of N should have been present in the sediment at the time when the experiment 

started. Data on bare sand control samples pointed out that the upper beach dry zone 

accumulates 0.15 M m
-2

 of inorganic N and 0.95 M m
-2

 of organic N, which represents 

around 4500 % above the total N expected. Similarly, averaged values of P obtained in bare 

sand areas during the experiment (0.95 M m
-2

) were above values expected year round (0.12 

M m
-2

).  

Averaged organic C from bare sand patches was 5.7 M m
-2

, what is above values 

expected according to the calculations of the year-round study (0.38 M m
-2

). As started 

above, we hypothesize that C and N from previous strandings remains in the spot as a 

consequence of a weak physical and biological fractioning of the wrack biomass, long 

periods out of tidal innundation and desiccation. These factors influence on the chances of 

mineralization by bacterial assemblages and the possibilities of nutrients to percolate into the 

sediment (by pluviosity, tidal inundation, sea spray, etc). 

The augmented nitrification and CO2 emission throughout the wrack decaying process in 

warm-induced environment could be linked with a boost in microbial activity, rather than an 

increment in microbial biomass, according to the non-significant difference in DNA contents 

between the sediment within the OTCs and those in control plots. The lack of statistical 

differences in the TIN contents between sediment underneath fresh algal patches and that 
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from bare sand plots without wrack, contrast with the clear rise in CO2 emission through 

patches supplied with algae, either fresh or aged.  

 

Carbon is respired as CO2 through bacterial metabolism, which is mainly dependent on 

the algal wrack occurrence and humidity (Visser and Parkinson 1992; McCulley et al., 2004; 

Hollister et al., 2006; Li et al., 2015). Soil respiration measured as CO2 fluxes may represent 

a good proxy for ecosystem carbon cycling rates (Sharkuu et al., 2013). Our data indicated 

that CO2 flux increased under warming conditions, as well as on the different substrates, as 

follows: aged algae > fresh algae > bare sand. The relationship between CO2 flux and TIN in 

the sediment highlights the coupling between microbial metabolism and mineralization. Why 

aged material intensify soil respiration was not tested, but we hypothesize that the partial 

degradation of algal tissues facilitated leaching of edible C and N to the sediment, thus 

supplying organic substrate that enhanced the microbial activity (McCulley et al. 2004; 

Hardison et al., 2010). The C:N relationship of both fresh and aged Saccorhiza were similar, 

which means that other factors may be facilitating the decomposition process. Phenolic 

contents can drop drastically in algal tissues once senescence or decomposition starts (Lastra 

et al., 2015), which is expected to facilitate wrack decay and consumption through loss of 

deterrent traits.  Moreover, a surplus in bacteria coating the algal fronds can be responsible 

for the large respiration flow measured at initial time in aged Saccorhiza.  

 

The low number of consumer macrofauna, associated with wrack patches, in particular 

herbivores, is a common feature of the beach studied (Lastra, unpublished data); therefore, 

physical fragmentation and microbial activity are major protagonists of the fragmentation, 

decaying and mineralization of the algal biomass (Porri et al., 2011; Salathe & Riera, 2012). 
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Thus, the lack of macrofaunal contribution in this experiment delayed the decomposition 

process of the algal wrack biomass, what means that our results in beach metabolism could 

be enhanced in similar beaches with higher density of wrack-associated consumers of algal 

wrack subsidies, as Talitrid amphipods and Oniscidea Isopods. 

Although the warming produced by the OTCs in this experiment setup was within the 

range of the most optimistic predictions of the IPCC report (2014) for western Europe, the 

consequence in terms of C and N cycling from wrack subsidies to sandy beaches are of 

relevance. Macroalgal production worldwide is estimated to be 1521 Tg C y
-1

 (Duarte & 

Cebrian, 1996), which means around 5390 Tg algal biomass (DW). There is not much 

information on the amount of macroalgal productivity that reaches the shore, but studies 

suggest that between 18 % and 44.4 % of the macroalgal production strand in the shoreline 

within 10 to 20 days after detachment from the original substrate (Hobday, 2000; Krause-

Jensen & Duarte, 2016). Assuming an averaged supply of 31.2 % of the total production to 

the surrounding sedimentary shores, means that 1681 Tg y
-1

 of algae strand along the beaches 

worldwide, which can be translated into 34 Tg y
-1

 of N and 476 Tg y
-1

 of C (Gevaert et al., 

2001). According to our baseline data, 59 % of the stranding wrack is stored on the supratidal 

beach, which means that, on a global scale, 991 Tg y
-1

 of algae remain within an environment 

where decomposition process is buffered, compared with what occurs in saturated sediments 

or in the water column for an equivalent period of time. Increases in temperature within the 

range predicted by the IPCC (0.5 to 1.5 ºC over the next decades) will accelerate the beach 

metabolism during wrack decomposition in the supratidal beach; as a consequence, ulterior 

release of inorganic nutrients to the coastal water could increase by 30 % for the TIN (21 Gg 

y
-1

) and 5.9 % for P (14 Gg y
-1

). That increase for the flow of C to the atmosphere as CO2, 

can be estimated in 8.2 % (523 Gg y
-1 

). 
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The uppermost layers of the dry sand in the supratidal beach zone, seem to be featured by 

a buffered decomposition rate of the allochthonous wrack subsidies. Low moisture and 

infrequent inundation events determine long residence time of nutrients and reduced C 

cycling through the interstitial environment. The upper beach thus acts as a storage 

compartment, compared with the active biogeochemical hot-spot that characterizes the 

permeable intertidal sediments. Uprising temperature at the most optimistic range predicted 

by the IPPC will accelerate wrack processing and beach metabolism, thus enhancing 

mineralization outputs, depleting the standing stock of inorganic nutrients on the upper 

beach, and thus increasing the release of nutrients toward the coastal environment and CO2 

into the atmosphere.  

The result of this study can be extrapolated to different types of sedimentary shores where 

sandy sediment and macroalgal subsidies prevail, what it occurs in most of the coastal rims 

from temperate latitudes worldwide. Variables analysed were associated with the 

decomposition of algal tissues and degradative bacterial metabolism in the upper beach zone, 

what is not linked with features such as beach morphodynamics or beach size. Effect of 

different wrack subsidies (e.g. vascular plants from sea grass beds or salt marshes) or 

sediment granulometry (e.g. muddy or gravel beaches) deserve to be investigated in the near 

future. 
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Figure captions 

Fig. 1 Average contents in (a) NH4+, (b) NO2-+NO3- and (c) PO4
-3

 in the sediment (μM 

g
-1

 of sand ± SE) for the warm-induced plots (OTC), and control plots of fresh Saccorhiza, 

aged Saccorhiza and bare sand over the 20 days of experiment. Within each variable, 

columns with the same letter indicate that the difference between the means was not 

statistically significant; columns with different letters indicate that they were significantly 

different. 

Fig. 2 Increases in net contents in (a) NH4+, (b) NO2-+NO3- and (c) PO4
-3

 in the sediment 

(μM g
-1

 ± SE) for the warm-induced plots (black symbols) and control plots (open symbols) 

of fresh Saccorhiza (circles), aged Saccorhiza (squares) over the 20 days of experiment. Net 

contents was calculated through the gross values subtracted by the corresponding values in 

bare sand, either treatments or controls.  

Fig. 3 Average CO2 flux (μM m
-2

 s
-1

) over the 20 days of experiment for the warm-

induced plots (OTC) and control plots of fresh Saccorhiza, aged Saccorhiza and bare sand. 

Columns with the same letter indicate that the difference between the means was not 

statistically significant; columns with different letters indicate that they were significantly 

different. 

Fig. 4 Total soil inorganic nitrogen vs. CO2 flux for all the treatments and control plots; 

CO2 values were standardized for the emission at the mean temperature along the daily cycle. 

Fig. 5 Increases in net contents in DNA in the sediment (ng g
-1

) for the warm-induced 

plots (squares) and control plots (circles) of fresh Saccorhiza (a) and aged Saccorhiza (b) 

over the 20 days of experiment. Net contents was calculated through the gross values 

subtracted by the corresponding values in bare sand, either treatments or controls.  
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Treatment 

 

Mean 

Temperature 

 

Mean daily 

Minimum 

Temperature 

Mean daily 

Maximum 

Temperature 

Degree-

days 

Fresh Algae 

control  
22.17 (3.76) 18.31 (1.04) 27.68 (3.55) 486 

Fresh Algae 

OTC 
22.20 (2.10) 20.13 (0.86) 25.01 (2.46) 494 

Aged Algae 

control  
21.82 (2.35) 19.27 (1.03) 25.20 (2.21) 487 

Aged Algae 

OTC 
22.16 (2.34) 19.87 (0.93) 25.45 (2.55) 493 

Bare Sand 

control  
21.87 (3.50) 18.07 (1.35) 27.20 (2.80) 484 

Bare Sand 

OTC 
22.00 (2.60) 19.23 (1.13) 25.86 (2.97) 491 

 

Table 1. Values of Temperature (ºC   SD) along the experiment time for all the control and treatment 

plots. Data recorded by data loggers buried at 5 cm depth in the sediment. Degree days calculated as 

the area under the curve of the daily average temperature, according to Jaki & Wolfsegger (2009).  
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