18 research outputs found
Recommended from our members
Snow and ice melt flow features on Devon Island, Nunavut, Arctic Canada as possible analogs for recent slope flow features on Mars
Based on morphologic and contextual analogs from Devon Island, Arctic Canada, the recent martian slope flow features reported by Malin and Edgett are reinterpreted as being due not necessarily to groundwater seepage but possibly to snow or ice melt
Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission
Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the approx. 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field demonstration illustrated the need for science operations personnel in constant communications with the flight mission operators and the Science Backroom to provide immediate and continual science support and validation throughout the mission. Specific data analysis tools are also required to enable immediate data monitoring, visualization, and decision making. The field campaign demonstrated that this novel methodology of real-time science operations is possible and applicable to providing important new insights regarding lunar polar volatiles for both science and exploration
The Icebreaker Life Mission to Mars: A Search for Biomolecular Evidence for Life
The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, ~ 5 Myr ago. Carbon dioxide and nitrogen is present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground-ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: 1. Search for specific biomolecules that would be conclusive evidence of life. 2. A general search for organic molecules in the ground ice. 3. Determine the processes of ground ice formation and the role of liquid water. 4. Understand the mechanical properties of the Mars polar ice-cemented soil. 5. Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. And 6. Compare the elemental composition of the northern plains with mid-latitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at mid-latitudes. Duplicate samples could be cached as a target for possible return by a Mars Sample Return mission. If the samples were shown to contain organic biomarkers interest in returning them to Earth would be high
The Eurasian Modern Pollen Database (EMPD), version 2
The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019)Swiss National Science Foundation | Ref. 200021_16959
The Eurasian Modern Pollen Database (EMPD), version 2
The Eurasian (nee European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60% from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).Peer reviewe
Hair Trace Element and Electrolyte Content in Women with Natural and In Vitro Fertilization-Induced Pregnancy
The objective of the present study was to perform comparative analysis of hair trace element content in women with natural and in vitro fertilization (IVF)-induced pregnancy. Hair trace element content in 33 women with IVF-induced pregnancy and 99 age- and body mass index-matched control pregnant women (natural pregnancy) was assessed using inductively coupled plasma mass spectrometry. The results demonstrated that IVF-pregnant women are characterized by significantly lower hair levels of Cu, Fe, Si, Zn, Ca, Mg, and Ba at p < 0.05 or lower. Comparison of the individual levels with the national reference values demonstrated higher incidence of Fe and Cu deficiency in IVF-pregnant women in comparison to that of the controls. IVF pregnancy was also associated with higher hair As levels (p < 0.05). Multiple regression analysis revealed a significant interrelation between IVF pregnancy and hair Cu, Fe, Si, and As content. Hair Cu levels were also influenced by vitamin/mineral supplementation and the number of pregnancies, whereas hair Zn content was dependent on prepregnancy anthropometric parameters. In turn, planning of pregnancy had a significant impact on Mg levels in scalp hair. Generally, the obtained data demonstrate an elevated risk of copper, iron, zinc, calcium, and magnesium deficiency and arsenic overload in women with IVF-induced pregnancy. The obtained data indicate the necessity of regular monitoring of micronutrient status in IVF-pregnant women in order to prevent potential deleterious effects of altered mineral homeostasis
The Eurasian Modern Pollen Database (EMPD), version 2
Abstract. The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).</jats:p
Inquiries into the Consequences of Planetary-Scale Impacts and the Implications of Carbonates in the Hyper-Arid Core of the Sahara
This thesis focuses on the geophysical and morphological consequences of planetary-scale impacts – the last remnants of planetary accretion. In this size regime, the impact crater size is a significant fraction of the size of the planet, and the finite size of the target is important: its surface curvature, radial gravity, and large relative size of the impactor with respect to the target. A fully three-dimensional hydrodynamics model is used to simulate the events, thus capturing these finite-size effects. Simulated are a range of impact energies (0.02–5.89x10^(29) J), velocities (6–50 km/s), and angles (0º–75º) into a Mars-like planet. In addition, the variation in results with impactor type, for both single-material and differentiated impactors, is also examined. For this range of impact conditions, the crater size can span up to ~60% of the planetary circumference, and the ellipticity of the crater can be significant even for intermediate angle impacts. This is consistent with the observed large craters, which are commonly elliptical. Despite the large melt volumes produced, the planetary surface is preserved in most cases, as much of the melt is placed in the mantle. Antipodal crustal removal is common for the more energetic cases. For impacts with more than about three times the mutual impactor-target escape velocity, the impact has a net erosive effect, with more mass being removed than deposited. These large impacts are sufficiently massive that they can give an initially stationary Mars a rotation period of less than a day. The simulation results suggest that the Mars hemispheric dichotomy may have formed by a single, planetary-scale impact; the required impact conditions are consistent with accretion models.
The last chapter of this thesis examines the paleoclimate implications of reef-like carbonate structures in the currently hyper-arid core of the Sahara (southwestern Egypt). The carbonates suggest a wetter epoch about 9,000–10,000 years ago, and the presence of long-term, standing water. Despite the higher precipitation, the chemical composition of the carbonates suggests that the vegetation cover was sparse.</p
INQUIRIES INTO THE CONSEQUENCES OF PLANETARY-SCALE IMPACTS AND THE IMPLICATIONS OF CARBONATES IN THE HYPER-ARID CORE OF THE SAHARA
iii Starting graduate school is the easy part – it’s the long and winding path through classes and research and late nights and life and thoughts of careers and futures that are the hard part. And I have been incredibly lucky to have had a wonderfully winding path, surrounded by amazing people who made the journey both enjoyable – and doable. My sincere thanks to everyone who has helped me grow as a scientist. Thanks to my advisor, Oded Aharonson, for suggesting the Mars dichotomy problem (I do enjoy making Mars on my desk, and flinging large objects at it!). Thanks to the amazing facult
Geophysical consequences of planetary-scale impacts into a Mars-like planet
All planetary bodies with old surfaces exhibit planetary-scale impact craters: vast scars caused by the large impacts at the end of Solar System accretion or the late heavy bombardment. Here we investigate the geophysical consequences of planetary-scale impacts into a Mars-like planet, by simulating the events using a smoothed particle hydrodynamics (SPH) model. Our simulations probe impact energies over two orders of magnitude (2 × 10^(27)–6 × 10^(29) J), impact velocities from the planet’s escape velocity to twice Mars’ orbital velocity (6–50 km/s), and impact angles from head-on to highly oblique (0–75°). The simulation results confirm that for planetary-scale impacts, surface curvature, radial gravity, the large relative size of the impactor to the planet, and the greater penetration of the impactor, contribute to significant differences in the geophysical expression compared to small craters, which can effectively be treated as acting in a half-space. The results show that the excavated crustal cavity size and the total melt production scale similarly for both small and planetary-scale impacts as a function of impact energy. However, in planetary-scale impacts a significant fraction of the melt is sequestered at depth and thus does not contribute to resetting the planetary surface; complete surface resetting is likely only in the most energetic (6 × 10^(29) J), slow, and head-on impacts simulated. A crater rim is not present for planetary-scale impacts with energies >10^(29) J and angles ≤45°, but rather the ejecta is more uniformly distributed over the planetary surface. Antipodal crustal removal and melting is present for energetic (>10^(29) J), fast (>6 km/s), and low angle (≤45°) impacts. The most massive impactors (with both high impact energy and low velocity) contribute sufficient angular momentum to increase the rotation period of the Mars-sized target to about a day. Impact velocities of >20 km/s result in net mass erosion from the target, for all simulated energies and angles. The hypothesized impact origin of planetary structures may be tested by the presence and distribution of the geochemically-distinct impactor material