117 research outputs found

    Biological responses in stented arteries

    Get PDF
    Vascular walls change their dimension and mechanical properties in response to injury such as balloon angioplasty and endovascular stent implantation. Placement of bare metal stents induces neointimal proliferation/restenosis which progresses through different phases of repair with time involving a cascade of cellular reactions. These phases just like wound healing comprise distinct steps consisting of thrombosis, inflammation, proliferation, and migration followed by remodelling. It is noteworthy that animals show a rapid progression of healing after stent deployment compared with man. During stenting, endothelial cells are partially to completely destroyed or crushed along with medial wall injury and stretching promoting activation of platelets, and thrombus formation accompanied by inflammatory reaction. Macrophages and platelets play a central role through the release of cytokines and growth factors that induce vascular smooth muscle cell accumulation within the intima. Smooth muscle cells undergo complex phenotypic changes including migration and proliferation from the media towards the intima, and transition from a contractile to a synthetic phenotype; the molecular mechanisms responsible for this change are highlighted in this review. Since studies in animals and man show that smooth muscle cells play a dominant role in restenosis, drugs like rapamycin and paclitaxel have been coated on stent with polymers to allow local slow release of drugs, which have resulted in dramatic reduction of restenosis that was once the Achilles' heel of interventional cardiologist

    Autologous transplantation of culture-born myofibroblasts into intact and injured rabbit ligaments

    Get PDF
    Purpose: The myofibroblast, a contractile fibroblastic cell expressing α-smooth muscle actin (α-SMA), has been reported to play a role in ligament healing. The aim of this study was to evaluate the feasibility of transplanting culture-derived myofibroblasts in injured rabbit medial collateral ligaments (MCL) and in intact anterior cruciate ligaments (ACL). Methods: Fibroblasts isolated from the iliotibial band were cultured in the presence of transforming growth factor beta-1 (TGF-ÎČ1) for fivedays and analysed for α-SMA expression. In a concentration of TGF-ÎČ1 ≄ 10ng/ml, the differentiation rate into myofibroblast was 90%. After labelling with PKH26, α-SMA -positive cells were transplanted in intact ACL and in injured MCL of ten rabbits. Results: Survival of PKH-26+ cells was seen in all intact and damaged ligaments one day after injection. The density of PKH-26+ cells had decreased at seven days postinjection in both ligaments. Double-positive PKH-26+/α-SMA+ cells were only observed in injured MCL at sevendays postinjection. Moreover, we found that genetically modified fibroblasts differentiate into myofibroblasts and can be transplanted into ligaments. Conclusions: Our data demonstrate that culture-born myofibroblasts survive and maintain α-SMA expression up to one week after transplantation. This study provides the first insight into the feasibility of transplanted mechanically active cells for ligament reconstructio

    Biomechanical factors in atherosclerosis: mechanisms and clinical implications†

    Get PDF
    Blood vessels are exposed to multiple mechanical forces that are exerted on the vessel wall (radial, circumferential and longitudinal forces) or on the endothelial surface (shear stress). The stresses and strains experienced by arteries influence the initiation of atherosclerotic lesions, which develop at regions of arteries that are exposed to complex blood flow. In addition, plaque progression and eventually plaque rupture is influenced by a complex interaction between biological and mechanical factors—mechanical forces regulate the cellular and molecular composition of plaques and, conversely, the composition of plaques determines their ability to withstand mechanical load. A deeper understanding of these interactions is essential for designing new therapeutic strategies to prevent lesion development and promote plaque stabilization. Moreover, integrating clinical imaging techniques with finite element modelling techniques allows for detailed examination of local morphological and biomechanical characteristics of atherosclerotic lesions that may be of help in prediction of future events. In this ESC Position Paper on biomechanical factors in atherosclerosis, we summarize the current ‘state of the art' on the interface between mechanical forces and atherosclerotic plaque biology and identify potential clinical applications and key questions for future researc

    Translational opportunities of single-cell biology in atherosclerosis

    Full text link
    The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD

    Novel methodologies for biomarker discovery in atherosclerosis

    Get PDF
    Identification of subjects at increased risk for cardiovascular events plays a central role in the worldwide efforts to improve prevention, prediction, diagnosis, and prognosis of cardiovascular disease and to decrease the related costs. Despite their high predictive value on population level, traditional risk factors fail to fully predict individual risk. This position paper provides a summary of current vascular biomarkers other than the traditional risk factors with a special focus on the emerging −omics technologies. The definition of biomarkers and the identification and use of classical biomarkers are introduced, and we discuss the limitations of current biomarkers such as high sensitivity C-reactive protein (hsCRP) or N-terminal pro-brain natriuretic peptide (NT-proBNP). This is complemented by circulating plasma biomarkers, including high-density lipoprotein (HDL), and the conceptual shift from HDL cholesterol levels to HDL composition/function for cardiovascular risk assessment. Novel sources for plasma-derived markers include microparticles, microvesicles, and exosomes and their use for current omics-based analytics. Measurement of circulating micro-RNAs, short RNA sequences regulating gene expression, has attracted major interest in the search for novel biomarkers. Also, mass spectrometry and nuclear magnetic resonance spectroscopy have become key complementary technologies in the search for new biomarkers, such as proteomic searches or identification and quantification of small metabolites including lipids (metabolomics and lipidomics). In particular, pro-inflammatory lipid metabolites have gained much interest in the cardiovascular field. Our consensus statement concludes on leads and needs in biomarker research for the near future to improve individual cardiovascular risk predictio

    Microvesicles in vascular homeostasis and diseases. Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology

    Get PDF
    Microvesicles are members of the family of extracellular vesicles shed from the plasma membrane of activated or apoptotic cells. Microvesicles were initially characterised by their pro-coagulant activity and described as "microparticles". There is mounting evidence revealing a role for microvesicles in intercellular communication, with particular relevance to hemostasis and vascular biology. Coupled with this, the potential of microvesicles as meaningful biomarkers is under intense investigation. This Position Paper will summarise the current knowledge on the mechanisms of formation and composition of microvesicles of endothelial, platelet, red blood cell and leukocyte origin. This paper will also review and discuss the different methods used for their analysis and quantification, will underline the potential biological roles of these vesicles with respect to vascular homeostasis and thrombosis and define important themes for future research

    Future directions for therapeutic strategies in post-ischaemic vascularization: a position paper from European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology

    Get PDF
    Modulation of vessel growth holds great promise for treatment of cardiovascular disease. Strategies to promote vascularization can potentially restore function in ischaemic tissues. On the other hand, plaque neovascularization has been shown to associate with vulnerable plaque phenotypes and adverse events. The current lack of clinical success in regulating vascularization illustrates the complexity of the vascularization process, which involves a delicate balance between pro- and anti-angiogenic regulators and effectors. This is compounded by limitations in the models used to study vascularization that do not reflect the eventual clinical target population. Nevertheless, there is a large body of evidence that validate the importance of angiogenesis as a therapeutic concept. The overall aim of this Position Paper of the ESC Working Group of Atherosclerosis and Vascular biology is to provide guidance for the next steps to be taken from pre-clinical studies on vascularization towards clinical application. To this end, the current state of knowledge in terms of therapeutic strategies for targeting vascularization in post-ischaemic disease is reviewed and discussed. A consensus statement is provided on how to optimize vascularization studies for the identification of suitable targets, the use of animal models of disease, and the analysis of novel delivery methods

    Hétérogénéité phénotypique des cellules musculaires lisses artérielles du rat au cours du développement et du vieillissement

    No full text
    La diffĂ©renciation des cellules musculaires lisses (CML) artĂ©rielles est caractĂ©risĂ©e par une accumulation de protĂ©ines cytosquelettiques telles que l'actine α-musculaire lisse, la desmine et la myosine musculaire lisse. L'expression de ces protĂ©ines diminue fortement lors de la formation de la plaque athĂ©romateuse humaine et l'Ă©paississement intimal expĂ©rimental provoquĂ© par une lĂ©sion endothĂ©liale. En Ă©tudiant les protĂ©ines cytosquelettiques et les CML aortiques isolĂ©es de rats d'Ăąge diffĂ©rent cultivĂ©es comme populations parentales et clonales, nous avons montrĂ© que la capacitĂ© de rĂ©plication et la dĂ©diffĂ©renciation des CML augmentent avec l'Ăąge de l'animal. Les CML sont hĂ©tĂ©rogĂšnes au sein d'une mĂȘme population, et possĂšdent des caractĂ©ristiques diffĂ©rentes en fonction de l'Ăąge de l'animal. In vivo, la lĂ©sion endothĂ©liale de l'aorte stimule la prolifĂ©ration d'une sous-population de CML qui peut dĂ©river des CML qui soit se sont activement rĂ©pliquĂ©es aprĂšs la naissance, soit ont arrĂȘtĂ© leur rĂ©plication avant la naissance. Cette seconde possibilitĂ© laisse ouverte la question de l'existence de "cellules souches" dans la mĂ©dia. Nos rĂ©sultats suggĂšrent que les CML possĂšdent des propriĂ©tĂ©s intrinsĂšques leur permettant de rĂ©agir individuellement Ă  des changements du microenvironnement. L'Ăąge, facteur de risque indĂ©pendant pour l'athĂ©rosclĂ©rose, influence fortement ces propriĂ©tĂ©s
    • 

    corecore