16 research outputs found

    New developments of the Extended Quadrature Method of Moments to solve Population Balance Equations

    Get PDF
    Population Balance Models have a wide range of applications in many industrial fields as they allow accounting for heterogeneity among properties which are crucial for some system modelling. They actually describe the evolution of a Number Density Function (NDF) using a Population Balance Equation (PBE). For instance, they are applied to gas–liquid columns or stirred reactors, aerosol technology, crystallisation processes, fine particles or biological systems. There is a significant interest for fast, stable and accurate numerical methods in order to solve for PBEs, a class of such methods actually does not solve directly the NDF but resolves their moments. These methods of moments, and in particular quadrature-based methods of moments, have been successfully applied to a variety of systems. Point-wise values of the NDF are sometimes required but are not directly accessible from the moments. To address these issues, the Extended Quadrature Method of Moments (EQMOM) has been developed in the past few years and approximates the NDF, from its moments, as a convex mixture of Kernel Density Functions (KDFs) of the same parametric family. In the present work EQMOM is further developed on two aspects. The main one is a significant improvement of the core iterative procedure of that method, the corresponding reduction of its computational cost is estimated to range from 60% up to 95%. The second aspect is an extension of EQMOM to two new KDFs used for the approximation, the Weibull and the Laplace kernels. All MATLAB source codes used for this article are provided with this article

    An assessment of methods of moments for the simulation of population dynamics in large-scale bioreactors

    Get PDF
    A predictive modelling for the simulation of bioreactors must account for both the biological and hydrodynamics complexities. Population balance models (PBM) are the best approach to conjointly describe these complexities, by accounting for the adaptation of inner metabolism for microorganisms that travel in a large-scale heterogeneous bioreactor. While being accurate for solving the PBM, the Class and Monte-Carlo methods are expensive in terms of calculation and memory use. Here, we apply Methods of Moments to solve a population balance equation describing the dynamic adaptation of a biological population to its environment. The use of quadrature methods (Maximum Entropy, QMOM or EQMOM) is required for a good integration of the metabolic behavior over the population. We then compare the accuracy provided by these methods against the class method which serves as a reference. We found that the use of 5 moments to describe a distribution of growth-rate over the population gives satisfactory accuracy against a simulation with a hundred classes. Thus, all methods of moments allow a significant decrease of memory usage in simulations. In terms of stability, QMOM and EQMOM performed far better than the Maximum Entropy method. The much lower memory impact of the methods of moments offers promising perspectives for the coupling of biological models with a fine hydrodynamics depiction

    The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations

    Get PDF
    International audienceBACKGROUND:Full-term pregnancy (FTP) is associated with a reduced breast cancer (BC) risk over time, but women are at increased BC risk in the immediate years following an FTP. No large prospective studies, however, have examined whether the number and timing of pregnancies are associated with BC risk for BRCA1 and BRCA2 mutation carriers.METHODS:Using weighted and time-varying Cox proportional hazards models, we investigated whether reproductive events are associated with BC risk for mutation carriers using a retrospective cohort (5707 BRCA1 and 3525 BRCA2 mutation carriers) and a prospective cohort (2276 BRCA1 and 1610 BRCA2 mutation carriers), separately for each cohort and the combined prospective and retrospective cohort.RESULTS:For BRCA1 mutation carriers, there was no overall association with parity compared with nulliparity (combined hazard ratio [HRc] = 0.99, 95% confidence interval [CI] = 0.83 to 1.18). Relative to being uniparous, an increased number of FTPs was associated with decreased BC risk (HRc = 0.79, 95% CI = 0.69 to 0.91; HRc = 0.70, 95% CI = 0.59 to 0.82; HRc = 0.50, 95% CI = 0.40 to 0.63, for 2, 3, and ≥4 FTPs, respectively, P trend < .0001) and increasing duration of breastfeeding was associated with decreased BC risk (combined cohort P trend = .0003). Relative to being nulliparous, uniparous BRCA1 mutation carriers were at increased BC risk in the prospective analysis (prospective hazard ration [HRp] = 1.69, 95% CI = 1.09 to 2.62). For BRCA2 mutation carriers, being parous was associated with a 30% increase in BC risk (HRc = 1.33, 95% CI = 1.05 to 1.69), and there was no apparent decrease in risk associated with multiparity except for having at least 4 FTPs vs. 1 FTP (HRc = 0.72, 95% CI = 0.54 to 0.98).CONCLUSIONS:These findings suggest differential associations with parity between BRCA1 and BRCA2 mutation carriers with higher risk for uniparous BRCA1 carriers and parous BRCA2 carriers

    Correction to: Risk-reducing salpingo-oophorectomy, natural menopause, and breast cancer risk: an international prospective cohort of BRCA1 and BRCA2 mutation carriers.

    Get PDF
    After publication of the original article [1], we were notified that columns in Table 2 were erroneously displayed

    The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations

    Get PDF
    Background: Full-term pregnancy (FTP) is associated with a reduced breast cancer (BC) risk over time, but women are at increased BC risk in the immediate years following an FTP. No large prospective studies, however, have examined whether the number and timing of pregnancies are associated with BC risk for BRCA1 and BRCA2 mutation carriers. Methods: Using weighted and time-varying Cox proportional hazards models, we investigated whether reproductive events are associated with BC risk for mutation carriers using a retrospective cohort (5707 BRCA1 and 3525 BRCA2 mutation carriers) and a prospective cohort (2276 BRCA1 and 1610 BRCA2 mutation carriers), separately for each cohort and the combined prospective and retrospective cohort. Results: For BRCA1 mutation carriers, there was no overall association with parity compared with nulliparity (combined hazard ratio [HRc] ¼ 0.99, 95% confidence interval [CI] ¼ 0.83 to 1.18). Relative to being uniparous, an increased number of FTPs was associated with decreased BC risk (HRc¼ 0.79, 95% CI ¼ 0.69 to 0.91; HRc¼ 0.70, 95% CI ¼ 0.59 to 0.82; HRc¼ 0.50, 95% CI ¼ 0.40 to 0.63, for 2, 3, and 4 FTPs, respectively, Ptrend < .0001) and increasing duration of breastfeeding was associated with decreased BC risk (combined cohort Ptrend ¼ .0003). Relative to being nulliparous, uniparous BRCA1 mutation carriers were at increased BC risk in the prospective analysis (prospective hazard ration [HRp] ¼ 1.69, 95% CI ¼ 1.09 to 2.62). For BRCA2 mutation carriers, being parous was associated with a 30% increase in BC risk (HRc ¼ 1.33, 95% CI ¼ 1.05 to 1.69), and there was no apparent decrease in risk associated with multiparity except for having at least 4 FTPs vs. 1 FTP (HRc¼ 0.72, 95% CI ¼ 0.54 to 0.98). Conclusions: These findings suggest differential associations with parity between BRCA1 and BRCA2 mutation carriers with higher risk for uniparous BRCA1 carriers and parous BRCA2 carriers

    Ciclosporin A in bilateral auto-immune chronic posterior uveitis associated with macular oedema: a Long-term Observational Safety and Efficacy Study

    No full text
    International audienceObjectiveA non-interventional, longitudinal, retrospective follow-up study to assess CsA-induced nephrotoxicity (IN) and its reversibility after withdrawal in patients exhibiting a bilateral chronic posterior uveitis (CPU) associated with cystoid macular oedema (CMO) in at least one eye. Data from medical records between 1986 and 2013.MethodsPrimary outcome was the renal tolerance during and after CsA treatment assessed by plasma creatinine concentration and glomerular filtration rate (GFR) estimated by Chronic Kidney Disease Epidemiology (CKD-Epi) formula. Secondary outcomes were CsA through concentration, occurrence of cancers and ophthalmologic efficacy assessed by three parameters including CMO, vitreous inflammation, and best-corrected visual acuity BVCA changes.ResultsOne hundred forty-three patients were followed for renal tolerance. Underlying diseases were Birdshot retinochoroiditis (n = 67), Behçet disease (n = 9), probable sarcoidosis (n = 23), sympathetic ophthalmia (n = 3), idiopathic (n = 41). After CsA discontinuation in 115 patients (mean treatment duration of 5.9 ± 3.8 years) mean plasma creatinine concentration was 82.2 ± 14.2 µmol/L versus 82.1 ± 14.1 µmol/L at baseline, mean GFR was 79.4 ± 13.9 mL/min versus 82.5 ± 14.3 mL/min at baseline, with no significant difference (respectively p = 0.91 and p = 0.09). Blood pressure did not significantly change during follow-up. CMO was completely resorbed in at least one eye, in 70.8% patients (n = 72) at 6 months, in 71.4% patients (n = 49) at 10 years and in 54.2% patients (n = 24) at 20 years. BCVA did not statistically change over time.ConclusionEarly and long-term monitoring of renal tolerance and dual adjustment of CsA doses in inflammatory stages of CPU were associated with reversible CsA IN. CsA could be effective in the treatment of CMO in CPU patients

    Familial breast cancer and DNA repair genes: Insights into known and novel susceptibility genes from the GENESIS study, and implications for multigene panel testing

    No full text
    This article is dedicated to the memory of Olga M. Sinilnikova who died prematurely on June 30, 2014. Olga participated decisively in structuring research around hereditary predisposition to BC and in leading the GENESIS study with Nadine Andrieu and Dominique Stoppa-Lyonnet. She also contributed to the design of the GENESIS-NGS project.International audiencePathogenic variants in BRCA1 and BRCA2 only explain the underlying genetic cause of about 10% of hereditary breast and ovarian cancer families. Because of cost-effectiveness, multigene panel testing is often performed even if the clinical utility of testing most of the genes remains questionable. The purpose of our study was to assess the contribution of rare, deleterious-predicted variants in DNA repair genes in familial breast cancer (BC) in a well-characterized and homogeneous population. We analyzed 113 DNA repair genes selected from either an exome sequencing or a candidate gene approach in the GENESIS study, which includes familial BC cases with no BRCA1 or BRCA2 mutation and having a sister with BC (N = 1,207), and general population controls (N = 1,199). Sequencing data were filtered for rare loss-of-function variants (LoF) and likely deleterious missense variants (MV). We confirmed associations between LoF and MV in PALB2, ATM and CHEK2 and BC occurrence. We also identified for the first time associations between FANCI, MAST1, POLH and RTEL1 and BC susceptibility. Unlike other associated genes, carriers of an ATM LoF had a significantly higher risk of developing BC than carriers of an ATM MV (ORLoF = 17.4 vs. ORMV = 1.6; p Het = 0.002). Hence, our approach allowed us to specify BC relative risks associated with deleterious-predicted variants in PALB2, ATM and CHEK2 and to add MAST1, POLH, RTEL1 and FANCI to the list of DNA repair genes possibly involved in BC susceptibility. We also highlight that different types of variants within the same gene can lead to different risk estimates

    GENESIS: a French national resource to study the missing heritability of breast cancer

    Get PDF
    International audienceBackground: Less than 20 % of familial breast cancer patients who undergo genetic testing for BRCA1 and BRCA2 carry a pathogenic mutation in one of these two genes. The GENESIS (GENE SISter) study was designed to identify new breast cancer susceptibility genes in women attending cancer genetics clinics and with no BRCA1/2 mutation. Methods: The study involved the French national network of family cancer clinics. It was based on enrichment in genetic factors of the recruited population through case selection relying on familial criteria, but also on the consideration of environmental factors and endophenotypes like mammary density or tumor characteristics to assess potential genetic heterogeneity. One of the initial aims of GENESIS was to recruit affected sibpairs. Siblings were eligible when index cases and at least one affected sister were diagnosed with infiltrating mammary or ductal adenocarcinoma, with no BRCA1/2 mutation. In addition, unrelated controls and unaffected sisters were recruited. The enrolment of patients, their relatives and their controls, the collection of the clinical, epidemiological, familial and biological data were centralized by a coordinating center
    corecore