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Population Balance Models have a wide range of applications in many industrial fields
as they allow accounting for heterogeneity among properties which are crucial for some
system modelling. They actually describe the evolution of a Number Density Function
(NDF) using a Population Balance Equation (PBE). For instance, they are applied to
gas–liquid columns or stirred reactors, aerosol technology, crystallisation processes, fine
particles or biological systems. There is a significant interest for fast, stable and accurate
numerical methods in order to solve for PBEs, a class of such methods actually does
not solve directly the NDF but resolves their moments. These methods of moments, and
in particular quadrature-based methods of moments, have been successfully applied to
a variety of systems. Point-wise values of the NDF are sometimes required but are not
directly accessible from the moments. To address these issues, the Extended Quadrature
Method of Moments (EQMOM) has been developed in the past few years and approximates
the NDF, from its moments, as a convex mixture of Kernel Density Functions (KDFs) of
the same parametric family. In the present work EQMOM is further developed on two
aspects. The main one is a significant improvement of the core iterative procedure of that
method, the corresponding reduction of its computational cost is estimated to range from
60% up to 95%. The second aspect is an extension of EQMOM to two new KDFs used for
the approximation, the Weibull and the Laplace kernels. All MATLAB source codes used for
this article are provided with this article.

1. Introduction

Population Balance Equations (PBEs) are particular formalisms that allows describing the evolution of properties among 
heterogeneous populations. They are used to track the size distribution of fine particles [1]; the bubble size distribution 

in gas–liquid stirred-tank reactors or bubble columns [2,3]; the crystal-size distribution in crystallizers; the distribution of 
biological cell properties in bioreactors [4,5]; the volume and/or surface distribution of soot particles in flames [6,7] or the 
formation of nano-particles [8], among other examples.

* Corresponding author at: LISBP-INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France.

E-mail address: maxime .pigou @insa -toulouse .fr (M. Pigou).



Nomenclature

Greek symbols

ε relative tolerance

λ j j-th nested quadrature node

µ positive measure

ω j j-th nested quadrature weight

Äξ NDF support

πk k order orthogonal polynomial

σ shape parameter

ξ random variable

ξi i-th main quadrature node

ζ realisability criteria on ]0,+∞[

Roman

a orthogonal polynomials recurrence coefficient

A transition matrix to degenerated moments

b orthogonal polynomials recurrence coefficient

H Hankel determinant

J n n order Jacobi matrix

mk moment of order k

M realisable moment space

n number density function

ñ approximation of n

N order of moment set

N order of realisability

pk canonical moment of order k

P number of main quadrature nodes

Q number of nested quadrature nodes

w i i-th main quadrature weight

A PBE describes the evolution and transport of a Number Density Function (NDF), under the influence of multiple 
processes which modify the tracked property distribution (e.g. erosion, dissolution, aggregation, breakage, coalescence, nu-
cleation, adaptation, etc.).

One often requires low-cost numerical methods to solve PBEs, for instance when coupling with a flow solver 
(e.g. Computational Fluid Dynamics software). Monte-Carlo methods constitute a stochastic resolution of the popula-
tion balance and can be applied to such PBE–CFD simulations [9]. Similarly, sectional methods allow direct numeri-
cal resolutions of the PBE through the discretisation of the property space [10,11]. They respectively require a high 

number of parcels or sections in order to reach high accuracy and are thus often discarded for large-scale simula-
tions.

An interesting alternative approach lies in the field of methods of moments. A PBE, which describes the evolution of a 
NDF, is transformed in a set of equations which describes the evolution of the moments of that distribution. Moments are 
integral properties of NDFs, the first low order integer moments are related to the mean, variance, skewness and flatness of 
the statistical distributions described by NDFs. This approach then reduces the number of resolved variables to a finite set of 
NDF moments. It also comes with some difficulties when one must compute non-moment integral properties, or point-wise 
evaluations, of the distribution [12].

To tackle these issues, one can try to recover a NDF from a finite set of its moments. In most cases, this reverse problem 

has an infinite number of solutions and different approaches exist to identify one or an other out of them. The simplest is 
probably to assume that the NDF is a standard distribution (Gaussian, Log-normal, . . . ) whose parameters will be deduced 

from its first few moments. Other methods that lead to continuous approximations, and which preserve a higher number 
of moments, are the Spline method [13], the Maximum-Entropy approach [12,14,15] or the Kernel Density Element Method 

(KDEM) [16].
More recently, the Extended Quadrature Method of Moments (EQMOM) was proposed as a new approach which is more 

stable than the previous ones, and yields either continuous or discrete NDFs depending on the moments [1,17,18]. EQMOM 

has been implemented in OpenFOAM [19] for the purpose of PBE–CFD coupling. The core of this method relies on an 

iterative procedure that is a computational bottleneck.
The current work focuses on EQMOM and develops a new core procedure whose computational cost is significantly 

lower than previous implementations by reducing both (i) the cost of each iteration and (ii) the total number of required 

iterations.
The previous core procedure [1] will be recalled before describing how it can be shifted toward the new – cheaper 

– approach. Both implementations will be compared in terms of computational cost (number of required floating-point
operations) and run-time.

Multiple variations of EQMOM exist, the Gauss EQMOM [17,20], Log-normal EQMOM [21] as well as Gamma and Beta 
EQMOM [18]. Two new variations, namely Laplace EQMOM and Weibull EQMOM, are proposed along with a unified formal-
ism among all six variations.

The whole source code used to write this article (figures and data generation) is provided as supplementary data, as well 
as our implementations of EQMOM in the form of a MATLAB functions library [22].



2. Quadrature Based Methods of Moments: QMOM and EQMOM

2.1. Definitions

Let dµ(ξ) be a positive measure, induced by a non-decreasing function µ(ξ) defined on a support Äξ . This measure is 

associated to a Number Density Function n(ξ) such that dµ(ξ) = n(ξ)dξ . Let mN be the vector of the first N + 1 integer 

moments of this measure:

mN =




m0

m1
...

mN


 , mk =

∫

Äξ

ξkn(ξ)dξ (1)

Three actual supports will be considered: (i) Äξ = ]−∞,+∞[, (ii) Äξ = ]0,+∞[ and (iii) Äξ = ]0,1[. For each support, 
one can define the associated realisable moment space, MN (Äξ ), as the set of all vectors of finite moments mN induced 

by all possible positive measures defined on Äξ .
A moment set is said to be “weakly realisable” if located on the boundary of the realisable moment space (mN ∈

∂MN (Äξ )). Otherwise, if located within the realisable moment space, mN is said to be “strictly realisable”.

2.2. Quadrature method of moments

EQMOM is based on the Quadrature Method of Moments (QMOM) that was first introduced by McGraw [23]. It is used to 

approximate integral properties of a distribution where only a finite number of its moments is known. By making use of an 

even number of moments 2P , one can compute a Gauss quadrature rule characterised by its weights w P = [w1, . . . , w P ]T

and nodes ξ P = [ξ1, . . . , ξP ]T such that:

∫

Äξ

f (ξ)dµ(ξ) =
P∑

i=1

w i f (ξi) (2)

holds true if f (ξ) = ξk, ∀k ∈ {0, . . . , 2P − 1}. Otherwise, this quadrature rule will produce an approximation of the integral 
property. The computation of the quadrature rule (i.e. the vectors w P and ξ P ) is of special interest for following develop-
ments, which is why its two main steps will be detailed.

Any positive measure dµ(ξ) is associated with a sequence of monic polynomials (i.e. polynomial whose leading coeffi-

cient equals 1) denoted πk – with k the order of the polynomial – such that:
∫

Äξ

πi(ξ)π j(ξ)dµ(ξ) = 0, for i 6= j (3)

These polynomials are said orthogonal with respect to the measure dµ(ξ) and are defined by:

πk(ξ) =
1

ck

∣∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mk−1 mk

m1 m2 · · · mk mk+1
...

...
. . .

...
...

mk−1 mk · · · m2k−2 m2k−1

1 ξ · · · ξk−1 ξk

∣∣∣∣∣∣∣∣∣∣∣

(4)

with ck a constant chosen so that the leading coefficient (of order k) of πk equals 1, hence making πk a monic polynomial.

It is known that monic orthogonal polynomials satisfy a three-term recurrence relation [24]:

πk+1(ξ) = (ξ − ak)πk(ξ) − bkπk−1(ξ) (5)

with ak and bk being the recurrence coefficients specific to the measure dµ(ξ), π−1(ξ) = 0 and π0(ξ) = 1.

Let J n(dµ) be the n × n Jacobi matrix associated to the measure dµ. This is a tridiagonal symmetric matrix defined as:

J n(dµ) =




a0
√
b1 0

√
b1 a1

. . .

. . .
. . .

√
bn−1

0
√
bn−1 an−1




(6)



The weights and nodes of the quadrature rule from Eq. (2) are given by spectral properties of J P (dµ). The nodes ξ P of 

the rule are the eigenvalues of J P (dµ). The weights of the rule are given by:

w i =m0v
2
1,i (7)

where v1,i is the first component of the normalised eigenvector belonging to the eigenvalue ξi . The computation of the 
quadrature rule (Eq. (2)) then relies on two steps:

1. The computation of the recurrence coefficients aP−1 = [a0, . . . , aP−1]T and bP−1 = [b1, . . . , bP−1]T .
2. The computation of the eigenvalues and the normalised eigenvectors of J P (dµ).

Multiple algorithms are available in the literature to compute the recurrence coefficients:

• The Quotient-Difference algorithm [25,26]
• The Product-Difference algorithm [27]
• The Chebyshev algorithm [28]

The Chebyshev algorithm was found to be the stablest one of the three [1,28], its description is given in Appendix A.

2.3. Extended Quadrature Method of Moments

The QMOM method is well suited for the approximation of integral properties of the NDF, which is actually the main 

purpose of Gauss quadratures. However, in many applications such as evaporation [12] or dissolution [29] processes, point-
wise values of the NDF n(ξ) are required but not directly accessible from the moments. For that purpose, a method is 
needed to produce an approximation ̃n(ξ) of the original distribution n(ξ), by knowing only a finite set of its moments.

In a sense, one can consider that the Gaussian quadrature computed with QMOM approximates n(ξ) as a weighted sum 

of Dirac distributions:

ñ(ξ) =
P∑

i=1

w iδ(ξ, ξi) (8)

with the Dirac δ distribution defined by its sifting property

+∞∫

−∞

f (ξ) δ(ξ, ξm)dξ = f (ξm) (9)

For most applications, n(ξ) is expected to be a continuous distribution whilst QMOM yields monodisperse or discrete 
polydisperse reconstructions of n(ξ), with ̃n(ξ) = 0 for all values of ξ except some finite number of these values.

Many methods were suggested to tackle this problem and to propose a continuous reconstruction ñ(ξ) from a finite 
number of moments mN . Some of them are the Spline method [13], the Maximum-Entropy approach [14,15,12] or the 
Kernel Density Element Method [16]. Their properties will not be discussed here but one only underlines that they tend 

to be unstable, ill-conditioned, or have a high sensitivity to numerical parameters [13,29,30]. In particular, none of them 

can handle the case of a weakly realisable moment set. Such a moment set is associated to a discrete (or degenerated) 
distribution and, in this specific case, the distribution provided by QMOM is the only possible reconstruction (see Eq. (8)).

Note that a failure – or instabilities – in a numerical method can compromise the integrity of large-scale simulations. 

For this reason, Chalons et al. [17], Yuan et al. [18] and Nguyen et al. [1] proposed a robust and stable method to tackle this 

reconstruction problem by handling both continuous approximations and discrete solutions. Their approach, the Extended 

Quadrature Method of Moments, approximates n(ξ) as a convex mixture of Kernel Density Functions (KDFs) of the same 

parametric family:

ñ(µ) =
P∑

i=1

w iδσ (ξ, ξi) (10)

with

• w i : the weight of the i-th node, w i ≥ 0, ∀i ∈ {1, . . . , P }
• ξi : the location parameter of the i-th node, ξi ∈ Äξ , ∀i ∈ {1, . . . , P }
• δσ : a KDF chosen to perform the approximation, referred later to as the reconstruction kernel. σ is the shape parameter

of the approximation.



The computation of the weights w P = [w1, . . . , w P ]T , the nodes ξ P = [ξ1, . . . , ξP ]T and the shape parameter σ from the 
moment set m2P is performed by the EQMOM moment-inversion procedure. The improvement of this procedure constitutes 
the core of this article and is detailed in section 3.

Multiple standard normalized distribution functions can be used as the reconstruction kernel δσ (e.g. Gaussian, Log-

normal, etc.). A list of them is given in Appendix B. All of these kernels degenerate into Dirac distribution if their shape 

parameters are sufficiently small:

lim
σ→0

δσ (ξ, ξm) = δ(ξ, ξm) (11)

This allows EQMOM to be numerically stable in the case of a moment set m2P being on the boundary of the realisable 
moment space ∂M2P (Äξ ). Indeed, in such cases, the EQMOM approximation simply degenerates in a weighted sum of 
Dirac distribution and the definition given in Eq. (10) still holds true, with σ = 0.

EQMOM can also be used to compute integral properties of the NDF with high accuracy. This comes with the introduction 

of nested quadratures. The main quadrature proposes the following approximation of integral terms:

∫

Äξ

f (ξ)n(ξ)dξ ≈
P∑

i=1

w i




∫

Äξ

f (ξ)δσ (ξ, ξi)dξ


 (12)

Moreover, a quadrature rule can be used to approximate the bracketed integral in Eq. (12). This will be the nested quadra-

ture that actually depends on the kernel δσ (ξ, ξm). For instance, Gauss–Hermite quadratures can be used to approximate 

integrals over a Gaussian kernel (see Appendix B.1). Nested quadratures then give the following approximation:

∫

Äξ

f (ξ)n(ξ)dξ ≈
P∑

i=1

w i

Q∑

j=1

ω j f
(
g(σ , ξi, λ j)

)
(13)

with Q the order, ωQ = [ω1, . . . , ωQ ]T the weights and λQ = [λ1, . . . , λQ ]T the nodes of the sub-quadrature. g defines the 
nodes of the nested quadrature from σ , ξi and λ j . These nested quadratures are detailed for all KDFs in Appendix B and 

Appendix C.

3. Moment inversion procedure

The EQMOM moment-inversion procedure comes with analytical solutions for some kernels in the case of low-order 
quadratures. The one-node analytical solutions are detailed for all kernels in Appendix B. When they exist, the two-nodes 
analytical solutions are implemented in MATLAB code (see supplementary data) but are not detailed in this article. The 
current section is focusing on the numerical procedure used to compute the reconstruction parameters in absence of an 

analytical solution.
The procedure proposed by Yuan et al. [18] and Nguyen et al. [1] is first recalled in section 3.1. The section 3.2 details 

how their approach can be shifted toward a new convergence criteria that will be applied to the specific cases of

• the Hamburger moment problem (section 3.3): NDF defined on the whole phase space Äξ = ]−∞,+∞[
• the Stieltjes moment problem (section 3.4): NDF defined on the positive phase space Äξ = ]0,+∞[
• the Hausdorff moment problem (section 3.5): NDF defined on the closed support Äξ = ]0,1[

Some moment sets lead to ill-conditioned situations that need to be specifically handled by EQMOM implementations.
These are addressed in section 3.6.

3.1. Standard procedure

Let mN be the vector of the first N + 1 integer moments of the measure dµ(ξ) = n(ξ)dξ , with N = 2P an even integer:

mN =




m0

m1
...

mN


 , mk =

∫

Äξ

ξkn(ξ)dξ (14)

The EQMOM moment-inversion procedure aims to identify the parameters σ , w P = [w1, . . . , w P ]T and ξ P = [ξ1, . . . , ξP ]T

such that mN = m̃N with:



m̃N =




m̃0

m̃1
...

m̃N


 , m̃k =

∫

Äξ

ξkñ(ξ)dξ, ñ(ξ) =
P∑

i=1

w iδσ (ξ, ξi) (15)

For any value of σ , Yuan et al. [18] identified a procedure which leads to the parameters w P and ξ P such that mN−1 =
m̃N−1 . The EQMOM moment-inversion problem has then been reduced to solving a scalar non-linear equation by looking 
for a root of the function DN (σ ) =mN − m̃N(σ ).

The approach developed by Yuan et al. [18] and then improved by Nguyen et al. [1] is based on the fact that, for the 

KDFs used in EQMOM, it is possible to write the following linear system:

m̃n = An(σ ) ·m∗
n (16)

where An(σ ) is a lower-triangular (n + 1) × (n + 1) matrix whose elements depend only on the chosen KDF and on the 

value σ , whereas m∗
n is defined as:

m∗
n =




m∗
0

m∗
1
...

m∗
n


 , m∗

k =
P∑

i=1

w iξ
k
i (17)

By their definition, the moments m∗
n correspond to the moments of a degenerated distribution (i.e. a finite sum of Dirac 

distributions), hence these moments will be referred as the degenerated moments of the approximation. Degenerated moments 
are defined in such a way that the vectors w P and ξ P can be computed from m∗

2P−1 using a Gauss Quadrature (see 2.2).
At this point, one has the basis required to compute the objective function DN (σ ) and to search for its root. The com-

putation of DN (σ ) from a vector mN is as follow (see also Fig. 1a):

1. Compute m∗
N−1(σ ) = A−1

N−1(σ ) ·mN−1 .
2. Compute the recurrence coefficients a∗

P−1(σ ) and b∗
P−1(σ ) by applying the Chebyshev algorithm to m∗

N−1(σ ).
3. Use the recurrence coefficients to compute the Gaussian quadrature rule w P (σ ) and ξ P (σ ).
4. Knowing the parameters σ , w P (σ ) and ξ P (σ ) of the reconstruction, compute m̃N (σ ), this can be done easily by:

• Computing the N-th order degenerated moment of the approximated NDF: m∗
N (σ ) =

∑P
i=1 w i(σ )ξi(σ )N .

• Multiplying the last line of AN (σ ) and the vector of degenerated moments: m̃N(σ ) = [0, 0, . . . , 1] · AN(σ ) ·[
m∗

0(σ ), . . . ,m∗
N−1(σ ),m∗

N (σ )
]

T
.

5. Compute DN(σ ) =mN − m̃N(σ ).

For each compatible KDF, it is possible to use low order moments to compute an upper bound σmax so that the search of
a root of DN is restricted to the interval σ ∈ [0,σmax]. Then a bounded non-linear equation solver such as Ridder’s method 

can be applied to actually find the root of the function.
Two specific cases were discarded in the previous description of the method. First, it happens that the function DN does 

not admit any root, in such a case the procedure is switched toward the minimisation of this function in order to reduce 
the error on the last moment of the approximation.

Second, during the computation of DN (σ ), one must compute degenerated moments from which weights and nodes are 
extracted. If degenerated moments m∗

N−1(σ ) turn out not to be realisable on the support Äξ of the NDF, the quadrature 
performed on this vector will lead to nodes outside Äξ , or even to negative/complex weights. Nguyen et al. [1] then suggest 
to check for the realisability of degenerated moments, and if these are not realisable, to set m̃N (σ ) to a arbitrarily high 

value such as 10100 . This will force the non-linear equation solver to test a lower value of σ in order to bring back the 
vector m∗

N−1(σ ) within the realisable moment space. However note that this is only a numerical trick to converge toward 

the actual root, but DN (σ ) is actually undefined as soon as m∗
N−1(σ ) is not realisable.

3.2. A new procedure based on moment realisability

The reversible linear system linking raw moments of the approximation m̃N to its degenerated moments m∗
N is such 

that a new objective function D∗
N (σ ) – whose root is the same as that of DN (σ ) – can be formulated. Its computation is as 

follow (see also Fig. 1b):

1. Compute m∗
N(σ ) = A−1

N (σ ) ·mN .
2. Compute a quadrature on the vector m∗

N−1(σ ) to obtain the vectors w P (σ ) and ξ P (σ ).

3. Compute m∗
N(σ ) =

∑P
i=1 w i(σ )ξi(σ )N .

4. Compute D∗
N(σ ) =m∗

N(σ ) −m∗
N (σ ).



Fig. 1. Comparison of the computation of convergence criteria based on (a) DN(σ ), (b) D∗
N (σ ) and (c) the realisability criteria of the support Äξ . CA: 

Chebyshev Algorithm. QC: Quadrature Computation. The convergence criteria are highlighted in light blue. Inspired by Fig. 1 from Nguyen et al. [1]. (For
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Note that DN (σ ) = D∗
N(σ ) × AN,N(σ ). As shown in Appendix B for all kernels, diagonal elements of An(σ ) are always 

strictly positive, therefore the two objective functions do share the same roots.
The benefit of this new objective function is that it only requires the matrix A−1

N (σ ) instead of both the matrix A−1
N−1(σ )

and the last line of AN(σ ). This only increases the clarity of the method, but has hardly no effect on its numerical cost.

The point of this alternative approach is however to underline a crucial element for the new EQMOM implementation: 

we actually look for a value of σ for which m∗
2P (σ ) = m∗

2P (σ ). This implies that, for this specific searched σ value, the

vector m∗
2P (σ ) reads

m∗
2P (σ ) =




∑P
i=1 w iξ

0
i∑P

i=1 w iξ
1
i

...∑P
i=1 w iξ

2P
i




(18)

which is, by construction, the vector of the first 2P + 1 moments of the sum of P Dirac distributions.
Under the condition that a P -node EQMOM reconstruction exists for the moment set m2P with σ > 0, w i > 0, ξi 6=

0, i ∈ {1, . . . , P }, the vector m∗
2P (σ ) will have the following specific properties:

1. The vector m∗
2P−1(σ ) must be strictly within the realisable moment space MN−1(Äξ ).

2. The vector m∗
2P (σ ) must be on the boundary of the realisable moment space MN (Äξ ).

EQMOM procedure will then rely on the realisability of the vector m∗
2P (σ ) instead of the computation of the error on

the last moment, this will be a cheaper approach.
Situations were the EQMOM reconstruction exist but with σ = 0, or ∃i ∈ {1, . . . , P }, w i = 0 or ξi = 0 are tackled in 

section 3.6 but are always based on checking the realisability of m∗
2P (σ ).

The actual definition of the realisable moment space of order n, Mn , depends on the support Äξ of the NDF. The 
three classical supports, corresponding to the Hamburger, Stieltjes and Hausdorff moment problems, come with different 
constraints on a moment set to ensure its realisability. The realisability criteria for each of these supports will then be 
detailed.

Fig. 1 sums up the “standard approach” based on DN (σ ), the shifted approach, based on D∗
N (σ ), as well as the new 

approach based on the realisability criteria of m∗
2P (σ ) for all three supports.

3.3. Application to the Hamburger problem

As stated in 2.2, it is known that monic polynomials which are orthogonal to a measure dµ(ξ) = n(ξ)dξ satisfy a 
three-term recurrence relation (Eq. (5)) with ak and bk, k ∈N, the recurrence coefficients specific to the measure dµ(ξ). The 
Favard’s theorem [31] and its converse [32] imply that the measure dµ(ξ) is realisable on Äξ = ]−∞,+∞[ if and only if 
ak ∈R and bk > 0, ∀k ∈ N.



Fig. 2. Evolution of the different convergence criteria for both Gaussian (a and b) and Laplace (c and d) kernels depending on σ value. The two initial

moment sets are m(1)
6 = [1 1 2 5 12 42 133]T and m(2)

6 = [1 2 7 17 58 149 493]T .

One looks for a value of σ such that the associated degenerated moments m∗
2P−1(σ ) are strictly realisable (i.e. within the

moment space), and the moments m∗
2P (σ ) are weakly realisable (i.e. on the frontier of realisability). Then, if the Chebyshev

algorithm is used to compute the recurrence coefficients a∗
P−1(σ ) = [a∗

0(σ ), . . . , a∗
P−1(σ )]T and b∗

P (σ ) = [b∗
1(σ ), . . . , b∗

P (σ )]T

from the vector m∗
2P (σ ), the condition of realisability can be written in terms of values of b∗

P (σ ): looking for the EQMOM
reconstruction parameters with the Gaussian and Laplace kernels is equivalent to looking for a value of σ such as:

• b∗
k
(σ ) > 0, ∀k ∈ {1, . . . , P − 1}

• b∗
P (σ ) = 0

Fig. 2 makes use of the developments from Appendix B.1 and Appendix B.2, about the Gaussian and Laplace kernels
respectively, to show the evolution of D6(σ ), D∗

6(σ ) and b∗
k
(σ ), k ∈ {1, 2, 3} for two sets of 7 moments (P = 3). This figure 

illustrates the fact that indeed the approaches based on DN (σ ), D∗
N(σ ) and b∗

P (σ ) are equivalent as they share the same 
circled root.

Let denote σk the root of bk(σ ). One can notice that the root σk lies within the interval [0,σk−1]. We actually observed 

the existence of all roots σk, k ∈ {1, . . . , P } on numerous (about 106) randomly selected moment sets of N + 1 = 13 mo-
ments, and never observed an undefined root. The generality of this observation has not been mathematically proved, but 
it seems that indeed σk is always defined and always lies in σk ∈ [0,σk−1] , k ∈ {2, . . . , P }. σ1 is defined analytically.

The previous observations were used to design a simple algorithm which allows identifying the root σP . This algorithm 

is based on the fact that it is possible to check whether a value σt is higher or lower than σP at low cost and with no prior 
knowledge of σP value:

• If b∗
k
(σt) > 0, ∀k ∈ {1, . . . , P }, then σt < σP .

• Otherwise, that is if ∃k ∈ {1, . . . , P }, b∗
k
(σt) < 0, then σt > σP .

One can then use an iterative approach that will

1. Check the realisability of the raw moments m2P = m∗
2P (0) by computing b∗

P (0) and checking the positivity of all
elements.

2. Initialise an interval 
[
σ

(0)
l

, σ
(0)
r

]
such that σ

(0)
l

< σP and σ
(0)
r > σP , and then update these bounds to shrink the search

interval. These initial values will be σ
(0)
l

= 0 and σ
(0)
r = σ1 with σ1 the analytical solution of b∗

1(σ ) = 0.
3. Iterate over k

(a) Choose σt ∈
[
σ

(k−1)
l

,σ
(k−1)
r

]
.

(b) Compute b∗
P (σt).

(c) If all elements of b∗
P (σt) are positive, set σ (k)

l
= σt and σ

(k)
r = σ

(k−1)
r .

(d) Otherwise, set σ
(k)
l

= σ
(k−1)
l

and σ
(k)
r = σt .

The choice of σt at step 3a will be made by trying to locate the root σ j of b∗
j (σ ) with j the index of the first negative

element of b∗
P

(
σ

(k)
r

)
. Following Nguyen et al. [1] developments, the use of Ridder’s method is advised to select σt . This 

method actually tests two σ values per iteration. Consequently, the step 3 of the previous algorithm becomes:



3. Iterate over k
(a) Identify j the index of the first negative element of b∗

P

(
σ

(k−1)
r

)
.

(b) Compute σt1 = 1
2

(
σ

(k−1)
l

+ σ
(k−1)
r

)
and b∗

P (σt1 ).

(c) Compute σt2 = σt1 +
(
σt1 − σ

(k−1)
l

)
b∗
j

(
σt1

)
√
b∗
j

(
σt1

)2−b∗
j

(
σ

(k−1)
l

)
∗b∗

j

(
σ

(k−1)
r

) and b∗
P (σt2 ).

(d) Set σ
(k)
l

as the highest value between σ
(k−1)
l

, σt1 and σt2 such that the corresponding vector b∗
P contains only

positive values.

(e) Set σ (k)
r as the lowest value between σ

(k−1)
r , σt1 and σt2 such that the corresponding vector b∗

P contains at least 
one negative value.

Stop the computation if σ (k)
r − σ

(k)
l

< ε σ1 or if b∗
P

(
σ

(k)
l

)
< ε b∗

P (0), with ε a relative tolerance (e.g. ε = 10−10). Then

compute the weights w P and nodes ξ P of the EQMOM reconstruction by computing a Gauss quadrature based on the 

recurrence coefficients a∗
P−1

(
σ

(k)
l

)
and b∗

P−1

(
σ

(k)
l

)
.

Actual implementations of this algorithm for both kernels are provided as supplementary data.

3.4. Application to the Stieltjes problem

It is well known that the realisability of a moment set mN on the support Äξ = ]0,+∞[ is strictly equivalent to the 

positivity of the Hankel determinants H2n+d [33] defined as:

H2n+d =

∣∣∣∣∣∣∣

md · · · mn+d

...
. . .

...

mn+d · · · m2n+d

∣∣∣∣∣∣∣
(19)

with d ∈ {0, 1} and n ∈ N, 2n + d ≤ N .

This condition on the positivity of Hankel determinants can be translated into a condition on the positivity of the 

numbers ζk [32] defined by:

ζk =
Hk−3Hk

Hk−2Hk−1

, H j = 1 if j < 0 (20)

These numbers can be directly computed from the recurrence coefficients aP and bP defined in 2.2 through the following 

relations:

ζ2k =
bk

ζ2k−1
, ζ2k+1 = ak − ζ2k (21)

with ζ1 = a0 =m1/m0 .
The goal here is to use these realisability criteria to compute the parameters of EQMOM quadrature with either the 

Log-normal, the Gamma or the Weibull kernel (see Appendix B.3, Appendix B.4 and Appendix B.5 respectively). In these 
cases, one must

1. Compute m∗
N(σ ) = A−1

N (σ ) · mN with AN (σ ) the matrix associated to the chosen kernel (see Appendix B.3, Ap-
pendix B.4, Appendix B.5).

2. Apply the Chebyshev algorithm to m∗
N(σ ) to access the recurrence coefficients a∗

P (σ ) and b∗
P (σ ).

3. Compute ζ ∗
N (σ ) = [ζ ∗

1 (σ ), . . . , ζ ∗
N (σ )]T using relations in Eq. (21).

One actually looks for σ such that

• ζ ∗
k
(σ ) > 0, ∀k ∈ {1, . . . , N − 1}

• ζ ∗
N (σ ) = 0

Let σk be the root of ζ ∗
k
(σ ). In all cases, the root σ2 is defined, analytically for the Log-normal and Gamma kernels, and 

numerically for the Weibull kernel. Fig. 3 shows the evolution of D6(σ ), D∗
6(σ ) and ζ ∗

6(σ ) for three moment sets when the
developments relative to the Weibull (see Appendix B.5) kernel are used. Three situations can be observed on that figure:

1. All roots σk , k ∈ {2, . . . , N} are defined (Fig. 3a).
2. Some intermediary roots σk , k ∈ {3, . . . , N − 1}, are not defined but the root σN still exists (Fig. 3b).
3. The root σN is not defined (Fig. 3c).
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Fig. 3. Evolution of the different convergence criteria for the Weibull kernel depending on σ value. The initial moment sets are m
(a)
6 =

[1 1.5 12 131 15200 18033 2.16e5]T , m(b)
6 = [1 5.5 78 1285 22225 4.05e5 7.88e6]T and m(c)

6 = [1 1 2 5 14 42 133]T .

These three cases can be observed for the Gamma and Log-normal kernels too.
In the first two cases, when σN exists, the EQMOM approximation is well defined. The last case – where ζ ∗

N (σ ) admits 
no root in [0,σN−1] – actually corresponds to the case described by Nguyen et al. [1] where DN(σ ) did not admit any root 
either. In this case, it was suggested to minimise DN (σ ) in order to reduce the difference between mN and m̃N (σ ) as much 

as possible.
DN (σ ) tends to be a decreasing function, but is undefined as soon as any element of ζ ∗

N−1(σ ) is negative. The minimum 

of DN(σ ) is then usually located at the highest order defined root. For instance, in the case shown in Fig. 3c, the minimum 

of D6(σ ) is located at the root σ5 of ζ ∗
5 (σ ).

The moment-inversion procedure for reconstruction kernels defined on Äξ = ]0,+∞[ is then reduced to the identifica-
tion of the defined root σk, k ∈ {2, . . . , N}, of highest index. The algorithm proposed in section 3.3 already converges toward 

this root and only requires little adjustments:

1. Check the realisability of the raw moments m2P = m∗
2P (0) by computing ζ ∗

N (0) and checking the positivity of all
elements.

2. Initialise an interval
[
σ

(0)
l

, σ
(0)
r

]
with σ

(0)
l

= 0 and σ
(0)
r = σ2 with σ2 the solution of ζ ∗

2 (σ ) = 0.

3. Iterate over k
(a) Identify j the index of the first negative element of ζ ∗

N

(
σ

(k−1)
r

)
.

(b) Compute σt1 = 1
2

(
σ

(k−1)
l

+ σ
(k−1)
r

)
and ζ ∗

N(σt1 ).

(c) Compute σt2 = σt1 +
(
σt1 − σ

(k−1)
l

)
ζ ∗
j

(
σt1

)
√

ζ ∗
j

(
σt1

)2−ζ ∗
j

(
σ

(k−1)
l

)
∗ζ ∗

j

(
σ

(k−1)
r

) and ζ ∗
N(σt2 ).

(d) Set σ
(k)
l

as the highest value between σ
(k−1)
l

, σt1 and σt2 such that the corresponding vector ζ ∗
N contains only

positive values.

(e) Set σ (k)
r as the lowest value between σ

(k−1)
r , σt1 and σt2 such that the corresponding vector ζ ∗

N contains at least 
one negative value.

Stop the computation if σ
(k)
r −σ

(k)
l

< εσ1 or if ζ ∗
N

(
σ

(k)
l

)
< εζ ∗

N (0), with ε a relative tolerance (e.g. ε = 10−10). Then compute

the weights w P and nodes ξ P of the EQMOM reconstruction by computing a Gaussian-quadrature based on recurrence 

coefficients a∗
P−1

(
σ

(k)
l

)
and b∗

P−1

(
σ

(k)
l

)
.

3.5. Application to the Hausdorff problem

Moments of a distribution defined on the closed support Äξ = ]0,1[ must obey two sets of conditions in order to be 
within the realisable moment space [15,26]. The moment set mN is interior to the realisable moment space associated to 

the support Äξ = ]0,1[ if and only if:

• Hk > 0, ∀k ∈ {0, . . . , N}
• Hk > 0, ∀k ∈ {1, . . . , N}



Fig. 4. Evolution of the different convergence criteria for the Beta reconstruction kernel and four initial moment sets. These sets can be found in the figure
source code provided as supplementary data.

with Hk defined in Eq. (19) and Hk defined by

H2n+d =

∣∣∣∣∣∣∣

md−1 −md · · · mn+d−1 −mn+d

...
. . .

...

mn+d−1 −mn+d · · · m2n+d−1 −m2n+d

∣∣∣∣∣∣∣
(22)

Leaving aside the obvious condition H0 =m0 > 0, the conditions Hk > 0 and Hk > 0 induce a lower bound m−
k

and an 

upper bound m+
k

for the values of mk , k ∈ {1, . . . , N}. Consequently, one can define the canonical moments of the distribution 

pN = [p1, . . . , pN ]T as

pk =
mk −m−

k

m+
k

−m−
k

(23)

A moment set mN is strictly realisable if and only if the associated canonical moment set pN lies in the hypercube ]0,1[N . 

Canonical moments can be computed through the recurrence relation [34]:

pk =
ζk

1− pk−1
(24)

with ζk defined in Eq. (20) and p1 =m1 .
In the case of the Beta kernel (see B.6), one is looking for a value of σ such that the vector p∗

N (σ ) has the following 
properties:

• p∗
k
(σ ) ∈ ]0,1[ , ∀k ∈ {1, . . . , N − 1}

• p∗
N (σ ) = 0

p∗
N(σ ) is computed from the vector ζ ∗

N(σ ) which is deduced from the recurrence coefficients a∗
P−1(σ ) and b∗

P (σ ). These

are computed –like previously– through the Chebyshev algorithm applied to the vector m∗
N(σ ) = A−1

N (σ ) ·mN .
Fig. 4 shows the evolution of the canonical moments and the convergence criteria D6(σ ) and D∗

6(σ ) for four different
sets of 7 moments with the developments relative to the Beta kernel (see Appendix B.6). Each of these sets corresponds to 

one of the four situations encountered when dealing with Beta EQMOM:

• Fig. 4a: the root σN of DN (σ ), D∗
N(σ ) and p∗

N (σ ) exists and can be identified through a similar procedure than that
described in sections 3.3 and 3.4.

• Fig. 4b: the root σN is not defined but the minimum of DN (σ ) is located at the σ value for which p∗
N−1(σ ) is on the

boundary of the hypercube ]0,1[N−1 .
• Fig. 4c: DN(σ ), D∗

N(σ ) and p∗
N (σ ) admit multiple roots.

• Fig. 4d: the root σN is defined, but there is a range ]σv1 , σv2 [ with σv2 < σN , highlighted in light grey, such that in

this interval the convergence criteria are undefined because ∀σ ∈]σv1 , σv2 [, p∗
N−1(σ ) /∈ ]0,1[N−1 .



The algorithm proposed in sections 3.3 and 3.4 can still be applied here by replacing the convergence criteria by the 
canonical moments, and by checking that the values of p∗

N (σ ) all lie in the interval ]0,1[ instead of checking only for 
positivity:

1. Check the realisability of the raw moments m2P = m∗
2P (0) by computing p∗

N (0) and checking that all elements lie in
]0,1[.

2. Initialise an interval
[
σ

(0)
l

, σ
(0)
r

]
with σ

(0)
l

= 0 and σ
(0)
r = σ2 with σ2 the analytical solution of p∗

2(σ ) = 0.

3. Iterate over k
(a) Identify j the index of the first element of p∗

N

(
σ

(k−1)
r

)
that is either negative or higher than 1.

(b) Compute σt1 = 1
2

(
σ

(k−1)
l

+ σ
(k−1)
r

)
and p∗

N(σt1 ).

(c) If j < N and p∗
j

(
σ

(k−1)
r

)
> 1

• Compute σt2 = σt1 +
(
σt1 − σ

(k−1)
l

)
q∗
j

(
σt1

)
√
q∗
j

(
σt1

)2−q∗
j

(
σ

(k−1)
l

)
∗q∗

j

(
σ

(k−1)
r

) and p∗
N (σt2 ), with q∗

j (σ ) = 1 − p∗
j (σ ).

(d) Else, that is if j = N or p∗
j

(
σ

(k−1)
r

)
< 0

• Compute σt2 = σt1 +
(
σt1 − σ

(k−1)
l

)
p∗
j

(
σt1

)
√
p∗
j

(
σt1

)2−p∗
j

(
σ

(k−1)
l

)
∗p∗

j

(
σ

(k−1)
r

) and p∗
N(σt2 ).

(e) Set σ (k)
l

as the highest value between σ
(k−1)
l

, σt1 and σt2 such that the corresponding vector p∗
N lies in ]0,1[N .

(f) Set σ
(k)
r as the lowest value between σ

(k−1)
r , σt1 and σt2 such that the corresponding vector p∗

N does not lie in

]0,1[N .

Stop the computation if σ
(k)
r − σ

(k)
l

< εσ2 or if p∗
N

(
σ

(k)
l

)
< εp∗

N (0), with ε a relative tolerance (e.g. ε = 10−10). As previ-

ously, once convergence is achieved, the weights w P and nodes ξ P of the reconstruction can be obtained by computing a 

Gaussian quadrature rule based on the recurrence coefficients a∗
P−1

(
σ

(k)
l

)
and b∗

P−1

(
σ

(k)
l

)
.

This algorithm will converge to the root σN for cases similar to Fig. 4a; to the minimum of DN (σ ) for cases similar to 

Fig. 4b; to one of the multiple roots for cases similar to Fig. 4c. In the case illustrated in Fig. 4d, the algorithm may or may 
not identify the existing root, depending on whether one of the intermediate tested σ values lies in the greyed area.

One could try to develop a more robust algorithm, that will always find the root if it is defined, even in the case shown in 

Fig. 4d. An other improvement would be to ensure a consistent result when multiple roots exist, for instance by converging 
toward the lowest root, so that a small perturbation in the raw moments will only cause a small change on the resulting σ
value. Nothing prevents the current algorithm from converging toward one root for a moment set and toward another one 
after a small perturbation of this set which could induce instabilities in large-scale simulations. Note that these limitations 
already existed in previous EQMOM implementations and do not result from the new approach developed in this article.

3.6. Handling weakly realisable and ill-conditioned moment sets

The EQMOM moment-inversion procedure attempts to identify a NDF defined by

ñ(ξ) =
P∑

i=1

w iδσ (ξ, ξi) (25)

whose first 2P + 1 integer moments are given by m2P .
This approximation is not always possible as shown in sections 3.4 and 3.5. When the EQMOM approximation exists, it 

may be ill-conditioned if at least one of the followings holds true:

• σ = 0
• ∃i, w i = 0
• ∃i, ξi = 0

The first situation is that of m2P being weakly realisable. The second situation occurs if m2P is the moment set of a
convex mixture of the reconstruction kernel with less than P nodes. These situations are not mutually exclusive, a vector 
m6 could be the vector of the 7 first moments of a bi-Dirac distribution, one of which could be located in ξ = 0.

Accounting for these situations requires introducing the order of realisability of a moment set, N (mN). This notation 

was introduced by Nguyen et al. [1] but was only defined on Äξ =]0, +∞[ in terms of Hankel determinants. The following 
definition is broader as it encompasses theirs but extends it to other supports. N (mN ) is the number of moments in the 
largest strictly realisable subset of mN . For each support, the order of realisability is defined in terms of the realisability 
criterion:



• For Äξ = ]−∞,+∞[, compute bP from m2P ;
– if all elements are positive, N (m2P ) = 2P + 1;
– else, if there is n such that bn = 0, N (m2P ) = 2n;
– else, if there is n such that bn < 0, N (m2P ) = 2n − 1.

• For Äξ = ]0,+∞[, compute ζ 2P from m2P ;
– if all elements are positive, N (m2P ) = 2P + 1;
– else identify n such that ζn ≤ 0, N (m2P ) = n.

• For Äξ = ]0,1[, compute p2P from m2P ;
– if all elements are included on ]0, 1[, N (m2P ) = 2P + 1;
– else identify n such that pn /∈ ]0, 1[, N (m2P ) = n.

Detecting situations where σ = 0 requires to check the order of realisability of raw moments. If N (m2P ) is even, set 
σ = 0; otherwise apply the iterative procedure to m2P ′ with N (m2P ) = 2P ′ − 1 to identify σ [1].

The actual number of nodes required by the EQMOM approximation, i.e. the number of non-zero weights P ′′ , is de-
termined from N (m∗

2P (σ )). If it is even, P ′′ = N (m∗
2P (σ ))/2; otherwise, P ′′ = (N (m∗

2P (σ )) + 1)/2 but one node will be
located in ξ = 0 which might be an issue for KDFs defined on Äξ = ]0,+∞[ or Äξ = ]0,1[. The weights and nodes will be 
computed from the recurrence coefficients a∗

P ′′−1(σ ) and b∗
P ′′−1(σ ). If P ′′ < P , let wk = 0, ξk = 1/2, ∀k ∈ {P ′′ + 1, . . . , P }.

These adjustments of the first and last steps of algorithms described in sections 3.3, 3.4 and 3.5 give great stability to 

the moment-inversion procedure at low cost.
In the situation where N (m∗

2P (σ )) = 2P , the EQMOM approximation is guaranteed to preserve the whole moment set
m2P . However, if N (m∗

2P (σ )) < 2P , the approximation may, or may not, preserve all moments with no simple method to
check for this. One should compute the moments of the EQMOM approximation and measure the relative error from original 
moments.

4. Comparison of EQMOM approaches

4.1. Method

The new EQMOM moment-inversion procedure only requires computation of the realisability criteria of the vector of 
degenerated moments m∗

2P (σ ) in order to identify σ . These computations were already performed in the original approach
[1] to ensure the realisability of the vector m∗

2P−1(σ ) prior to the quadrature computation and ulterior steps.
It is therefore obvious that the new approach will always require a lower number of floating point operations (FLOP). In 

order to quantify this reduction on FLOP number, and the actual performance gain, different implementations of EQMOM 

are compared, they are based either on the realizability criteria, or on a quadrature-based objective function.

4.1.1. Tested EQMOM implementations

Comparison are performed for kernels defined on Äξ = ]−∞,+∞[ (i.e. Gauss and Laplace kernels), and on Äξ = ]0,+∞[
(i.e. Log-Normal, Gamma and Weibull kernels), using MATLAB [22] implementations.

Implementations that are based on the realizability criteria of m∗
2P (σ ) use algorithms that were fully described in sec-

tions 3.3 and 3.4 and adjustments from section 3.6.
For quadrature-based moment-inversion implementations, we optimized codes from Marchisio and Fox [20] and the 

OpenQBMM project [19] by implementing optimizations suggested by Nguyen et al. [1] and adjustments from section 3.6. 
Instead of searching for the root of D2P (σ ) (see Fig. 1a), these implementations directly search the root of D∗

2P (σ ) (Fig. 1b).

Doing so, all compared implementations only require the matrix A−1
2P (σ ) and can benefit from the same code optimization

when computing m∗
2P (σ ) = A−1

2P (σ ) ·m2P .
For kernels defined on Äξ = ]0,+∞[, if Ridder’s method fails to identify a root of D∗

2P (σ ), the golden-ratio method

is used to minimize D2P (σ )2 =
(
D∗

2P (σ ) · A2P ,2P (σ )
)2
. The golden-ratio minimization method was already used in Open-

QBMM [19].

4.1.2. Performance measurements

The main element of comparison is the number of floating-point operations required for the whole moment-inversion 

procedure. The MATLAB implementations embed a simple FLOP counter that distinguishes each operation (+, −, ∗, /, 
exp, 

√
·, Ŵ(·), . . . ) and counts them for each step of the moment-inversion procedure (linear system, Chebyshev algorithm, 

quadrature computation and others).
In order to evaluate the number of operations used in the computation of the eigenvalues and eigenvectors of the Jacobi 

matrix (Eq. (6)), the Jacobi and the Francis algorithms which are suited for symmetric matrices [35] are used in place of the 
MATLAB built-in “eig” function [22]. The Jacobi algorithm is used for matrices of size up to 3 × 3 and the Francis algorithm 

for larger matrices in order to always use the fastest method.
Two others metrics are measured for each call to the moment-inversion procedure: the number of tested σ values and 

the wall-time of function calls.



Table 1

Comparison of Gauss EQMOM implementations corresponding to Fig. 1b and 1c for moment sets far from the frontier of realisability. The count of FLOP
details the operations related to (i) the matrix–vector product A−1

2P (σ ) ·m2P , (ii) the Chebyshev Algorithm (CA), (iii) the Quadrature Computation (QC) and 
(iv) a miscellaneous category. Results are given as mean±standard-deviation among 104 moment sets.

P = 2 P = 3 P = 4 P = 5

New
approach

FLOP A−1
2P (σ ) 237±59 767±141 1709±253 3201±476

CA 177±40 477±83 979±139 1751±251

QC 52±0 474±42 995±120 1746±188

Misc. 54±12 65±11 75±11 86±12

Total 519±112 1783±242 3759±441 6784±830

Evaluations 12±3 14±2 17±2 19±3

Run-time (ms) 1±0 2±0 3±0 4±1

Former
approach

FLOP A−1
2P (σ ) 295±161 1433±423 4060±869 8516±1870

CA 202±102 853±241 2246±467 4509±967

QC 742±377 9171±2910 24997±9966 52312±14096

Misc. 191±99 430±129 804±156 1298±251

Total 1429±739 11887±3603 32108±10645 66635±16085

Evaluations 14±7 26±7 39±8 50±11

Run-time (ms) 1±1 9±3 17±5 31±7

Gain in FLOP 59.1%±12.3% 84.2%±3.5% 87.9%±2.5% 88.0%±13.1%

Evaluations 8.6%±27.7% 40.9%±17.7% 54.2%±12.8% 53.0%±55.2%

Run-time 53.2%±13.2% 81.9%±4.2% 84.0%±3.6% 83.3%±18.0%

4.1.3. Tested moment sets

Each comparison was performed on 104 randomly generated moment sets. These have varying size 2P + 1 ∈ {5, 7, 9, 11}
and were either far from, or close to, the boundary of the realisable moment space.

Moments sets for kernels defined on Äξ = ]−∞,+∞[ were computed from random vectors aP−1 and bP using a re-
versed Chebyshev algorithm. Distribution laws for the elements of these vectors are

• ak ∼N (0, 25), k ∈ {0, . . . , P − 1}.
• bk ∼ 1 + Exp(4), k ∈ {1, . . . , P }.
• bP ∼ Exp(0.5) for moment sets close from the frontier of realisability.

Similarly, moments sets for kernels defined on Äξ = ]0,+∞[ were computed from random vectors ζ 2P using a reversed
ζ -Chebyshev algorithm [1]. Elements of these vectors are generated using following distribution laws:

• ζk ∼ 1 + Exp(4), k ∈ {1, . . . , 2P }.
• ζ2P ∼ Exp(0.5) for moment sets close from the frontier of realisability.

4.1.4. Reproducibility

To allow reproducibility of results described hereafter, every source codes previously described, and randomly generated 

data, are available as supplementary data.

4.2. Results

Results of the comparison performed on Gauss-EQMOM for moment sets far from the boundary of the realisable moment 
space are given in Table 1. Similar tables are available as supplementary data for all kernels and moment sets.

Table 2 underlines a decrease in the number of tested σ values, in particular for high order reconstructions. This decrease 
is mainly due to the fact that in the former approach, if m∗

N−1(σ ) turns out not to be realisable, the objective function is 
set to a arbitrarily high negative value. The use of such an arbitrary value slows down the convergence of the non-linear 
equation solver. Meanwhile, the new approach never makes use of arbitrary values, all the elements of the vectors of 
realisability criteria (b∗

P (σ ), ζ ∗
2P (σ ) or p∗

2P (σ )) are used one after the other which yields a better choice of the next tested
σ value.

Moreover, for kernels defined on Äξ = ]0,+∞[ and in situations illustrated in Fig. 3c, the former approach may switch 

from a root search to a minimization process if no root is found. This induces numerous supplementary tested σ values 
before convergence is reached while this situation never occurs in the new approach.

A significant drop in the total number of FLOP can be observed in Table 3. This was expected and is mainly justified 

by the fact that the quadrature computation is only called once in the new approach whilst it is called for most tested σ
values in the former moment-inversion procedure. This quadrature, which consists in the computation of the eigenvalues 



Table 2

Gain in number of tested σ values.

P = 2 P = 3 P = 4 P = 5

Gauss Strict 8.6%±27.7% 40.9%±17.7% 54.2%±12.8% 53.0%±55.2%

Weak 10.2%±25.5% 43.0%±17.4% 54.7%±20.0% 42.4%±86.3%

Laplace Strict 8.6%±28.3% 41.1%±17.6% 54.3%±12.7% 53.2%±54.4%

Weak 9.9%±23.7% 43.3%±17.4% 54.8%±19.9% 42.5%±85.7%

Log-normal Strict 8.8%±45.9% 21.9%±32.8% 30.5%±27.0% 49.5%±23.8%

Weak 4.0%±38.1% 17.8%±26.4% 40.0%±27.0% 59.1%±16.1%

Gamma Strict 15.5%±38.2% 24.7%±31.1% 34.9%±30.1% 57.2%±24.9%

Weak 7.5%±28.3% 20.7%±26.0% 47.2%±29.6% 65.4%±16.0%

Weibull Strict 26.3%±35.0% 27.2%±30.2% 32.4%±28.1% 54.0%±25.8%

Weak 9.4%±15.7% 19.4%±17.7% 41.8%±25.3% 63.3%±16.4%

Table 3

Gain in FLOP for all tested kernels and moment sets.

P = 2 P = 3 P = 4 P = 5

Gauss Strict 59.1%±12.3% 84.2%±3.5% 87.9%±2.5% 88.0%±13.1%

Weak 59.3%±11.3% 84.4%±3.7% 87.8%±4.8% 85.3%±20.4%

Laplace Strict 64.2%±10.7% 87.5%±2.7% 91.0%±1.7% 91.6%±8.9%

Weak 64.1%±9.1% 87.5%±2.9% 90.8%±3.5% 89.6%±14.1%

Log-normal Strict 58.9%±20.0% 85.6%±5.8% 89.1%±4.3% 93.3%±3.5%

Weak 56.7%±16.7% 84.7%±4.6% 90.8%±4.4% 94.7%±2.4%

Gamma Strict 58.2%±18.8% 82.1%±7.3% 85.7%±6.8% 91.6%±5.4%

Weak 54.2%±14.1% 81.1%±6.1% 88.7%±6.9% 93.4%±3.5%

Weibull Strict 67.7%±15.1% 87.4%±5.1% 90.0%±4.2% 94.2%±3.6%

Weak 61.0%±6.5% 86.7%±3.0% 91.8%±3.9% 95.7%±2.3%

and eigenvectors of a tridiagonal symmetric matrix, is the most expensive operation used in the EQMOM moment-inversion 

procedure.
Concerning the impact of whether the moment sets are close or far from the boundary of the moment space, no signifi-

cant difference appears in Tables 2 and 3. This implies that there are no preferential situations where the former approach 

would have been more interesting. The new EQMOM core procedure should be used against all moment sets.
Overall, one observes a net decrease in the number of floating-point operations and in the computation run-times of 60% 

up to 95% for these implementations of EQMOM and the tested moment sets.
One final interesting observation is the evolution of variability in the computational cost of each EQMOM reconstruction. 

This is illustrated by the ratios standard-deviation/mean shown in Table 4. The high ratios occurring for the former approach, 
ranging from 24% up to 794%, show that the distributions of required FLOP by EQMOM reconstruction are highly skewed. 
This leads to high probabilities of significantly different computational costs between different moment sets.

On the other hand, that ratio never goes higher than 26% for the new approach if P = 2, and 16% for higher order recon-
structions. It implies that the distribution of numerical cost is more narrow and that this new approach will induce more 
consistent numerical costs among different moment sets. This is a salient feature of this new moment-inversion algorithm 

as it allows better load-balancing in high performance computing, in particular in highly parallelized CFD softwares.

5. Conclusion

The first developments relative to the Extended Quadrature Method of Moments are quite recent [17]. Most of these 
developments were dedicated to widening the use of this method to new application cases, in particular by adding new 

reconstruction kernels to the EQMOM formalism, and to demonstrate its stability and accuracy compared to other methods. 
This article summarised all of these developments, relative to the Gaussian kernel [17], to the Log-normal kernel [21] and 

to the Gamma and Beta kernels [18]. It was also shown that at least two other kernels are perfectly compatible with the 
EQMOM formalism: the Laplace and Weibull kernels.

The youth of EQMOM explains that there is still room left for improvements. The core of this method – the moment-
inversion procedure – is an iterative process which is its computational bottleneck. Nguyen et al. [1] proposed some 
modifications, compared to previous implementations, in order to stabilise the method and to speed-up its resolution, 
namely the use of Ridder’s method instead of bounded-secant or dichotomic methods to solve the non-linear problem, and 

the realisability checks performed prior to the quadrature computation.



Table 4

Ratio standard-deviation/mean of the distribution of total number of FLOP required by EQMOM reconstructions. Only moment sets generated far from the
frontier of realisability are considered.

P = 2 P = 3 P = 4 P = 5

Gauss New approach 0.22 0.14 0.12 0.12
Former approach 0.52 0.30 0.33 0.24

Laplace New approach 0.21 0.12 0.11 0.11
Former approach 0.67 0.30 0.43 0.43

Log-normal New approach 0.26 0.15 0.12 0.11
Former approach 1.10 0.97 7.94 6.48

Gamma New approach 0.25 0.16 0.15 0.15
Former approach 1.26 1.14 0.87 3.23

Weibul New approach 0.21 0.13 0.12 0.11
Former approach 1.05 1.46 7.21 6.41

Further improvements were proposed by shifting the resolution toward a new paradigm. This results in a significant 
decrease in computational cost of about 60%–95% in terms of required floating-point operations. This resulted in our MATLAB 

implementations in a similar gain in terms of computation wall-time. Moreover, the new approach offers more consistent 
numerical costs which will be beneficial to load-balancing in parallelized software.

In multiple works [1,18,30], EQMOM has been compared to other methods (Maximum Entropy approach or sectional 
methods) and exhibited (i) similar accuracy even with a lower number of resolved variables, and (ii) faster or comparable 
computation times. The new improvements of EQMOM will make it even more competitive as its stability and accuracy 
are kept while reducing the gap in terms of numerical cost between EQMOM and other cheaper methods such as Gauss or 
Gauss–Radau quadratures.

We strongly believe that transparency about these developments will help further refinements of EQMOM. For that 
reason, all sources used to generate figures and data in this article are provided as supplementary data. We also release all 
our EQMOM source codes both with this article and in an open-access GIT repository (url: https://gitlab .com /open -eqmom). 
It will be updated as well as supplemented with implementations of EQMOM in languages other than MATLAB. In the case 
of the Beta reconstruction kernel, some suggestions for further improvements in terms of accuracy and stability were listed 

in section 3.5. These will be tackled in ulterior work.
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Appendix A. Chebyshev algorithm

The Chebyshev algorithm allows to compute the three-term recurrence coefficients of the monic polynomials orthog-
onal to a measure dµ(ξ) whose moments are given by the vector mN = [m0, . . . , mN ]. This version of the algorithm fills 
column-wise a N + 1 × ⌈ N+1

2 ⌉ matrix denoted S .
First, fill the first column with the moments S i,0 = mi , compute a0 = m1/m0 and fill the second column with S i,1 =

S i+1,0 − a0S i,0, ∀i ∈ {1, . . . , N − 1}.
Then iterate for j ∈

{
2, . . . , ⌈ N−1

2 ⌉
}
:

a j−1 =
S j, j−1

S j−1, j−1
−

S j−1, j−2

S j−2, j−2

b j−1 =
S j−1, j−1

S j−2, j−2

S i, j = S i+1, j−1 − a j−1S i, j−1 − b j−1S i, j−2, i ∈ { j, . . . ,N − j}

Appendix B. Kernels for EQMOM

There exists multiple variations of the EQMOM method depending on the Kernel Density Function that is used for the 
reconstruction in Eq. (15). This section details the specificities of multiple KDF that were found to be compatible with the 
EQMOM procedure. It details for each kernel



1. the actual expression of that kernel δσ (ξ, ξm);
2. the expression of its moments;
3. the matrix An(σ ) that allows the transfer between the raw moments of the reconstruction m̃n and its degenerated

moments m∗
n;

4. the nested quadrature rules suiting this kernel;
5. the analytical solutions available for one-node EQMOM (P = 1).

Two-nodes analytical solutions exist for the Gaussian, Gamma, Laplace and Log-normal kernels and are accessible using
the same methodology than that used by Chalons et al. [17] for the Gaussian kernel. These solutions are not detailed here 
but are implemented in the MATLAB code given in supplementary data.

All definitions of matrices An(σ ) are given using zero-offset. The element of the first line and column of this matrix then 

reads A0,0(σ ).

B.1. Gaussian kernel

B.1.1. Definition

The Gaussian kernel δ(G)
σ (ξ, ξm) was first used in EQMOM by Chalons et al. [17]. It is defined on Äξ = ]−∞,+∞[ by

δ
(G)
σ (ξ, ξm) =

1

σ
√
2π

exp

(
−

(ξ − ξm)2

2σ 2

)
(B.1)

B.1.2. Moments and linear system

Moments of the Gaussian kernel are given by:

+∞∫

−∞

ξkδ
(G)
σ (ξ, ξm)dξ =

⌊k/2⌋∑

j=0

k!
j!(k − 2 j)!

(
σ 2

2

) j

ξ
k−2 j
m (B.2)

Moments of the distribution ̃n(ξ) =
∑P

i=1 w iδ
(G)
σ (ξ, ξi) are given by the linear system

m̃n = A
(G)
n (σ ) ·m∗

n (B.3)

with

A
(G)

i, j (σ ) =





0 if j > i or (i − j mod 2) = 1

i!(
i− j
2

)
! j!

(
σ 2

2

) i− j
2

otherwise
(B.4)

The inverse of this matrix is given by:

A
(G)−1
i, j (σ ) =





0 if j > i or (i − j mod 2) = 1

i!(
i− j
2

)
! j!

(
−σ 2

2

) i− j
2

otherwise
(B.5)

which translates, for the case n = 4, into:




m̃0

m̃1

m̃2

m̃3

m̃4




=




1 0

0 1

σ 2 0 1

0 3σ 2 0 1

3σ 4 0 6σ 2 0 1




·




m∗
0

m∗
1

m∗
2

m∗
3

m∗
4




(B.6)




m∗
0

m∗
1

m∗
2

m∗
3

m∗
4




=




1 0

0 1

−σ 2 0 1

0 −3σ 2 0 1

3σ 4 0 −6σ 2 0 1




·




m̃0

m̃1

m̃2

m̃3

m̃4




(B.7)



B.1.3. Moment preserving nested quadrature

The approximation of integral properties using Gauss EQMOM is performed through the following nested quadrature:

+∞∫

−∞

f (ξ)n(ξ)dξ ≈
1

√
π

P∑

i=1

w i

Q∑

j=1

ω j f
(
ξi + σλ j

√
2
)

(B.8)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and λQ are the weights and nodes of 
a Q -nodes Gauss–Hermite quadrature rule (see Appendix C).

B.1.4. Single node analytical solution

The case P = 1 has the following analytical solution:

w1 =m0

ξ1 =
m1

m0

σ =

√
m2m0 −m2

1

m0

B.2. Laplace kernel

B.2.1. Definition

The Laplace kernel δ(λ)
σ (ξ, ξm) is defined on Äξ = ]−∞,+∞[ by

δ
(λ)
σ (ξ, ξm) =

1

2σ
exp

(
−

|ξ − ξm|
σ

)
(B.9)

B.2.2. Moments and linear system

Moments of the Laplace kernel are given by

+∞∫

−∞

ξkδ
(λ)
σ (ξ, ξm)dξ =

k∑

j=0

k!
(k − j)!

1+ (−1) j

2
ξ
k− j
m σ j (B.10)

Moments of the distribution ̃n(ξ) =
∑P

i=1 w iδ
(λ)
σ (ξ, ξi) are given by the linear system

m̃n = A
(λ)
n (σ ) ·m∗

n (B.11)

with

A
(λ)

i, j (σ ) =

{
0 if j > i or (i − j mod 2) = 1
i!
j!σ

i− j otherwise
(B.12)

The inverse matrix is defined by

A
(λ) −1
i, j (σ ) =





1 if i = j

−( j + 1)( j + 2)σ 2 if i = j + 2

0 otherwise

(B.13)

which translates for n = 6 into




m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6




=




1 0

0 1

2!σ 2

0! 0 1

0 3!σ 2

1! 0 1

4!σ 4

0! 0 4!σ 2

2! 0 1

0 5!σ 4

1! 0 5!σ 2

3! 0 1

6!σ 6

0! 0 6!σ 4

2! 0 6!σ 2

4! 0 1




·




m∗
0

m∗
1

m∗
2

m∗
3

m∗
4

m∗
5

m∗
6




(B.14)






m∗
0

m∗
1

m∗
2

m∗
3

m∗
4

m∗
5

m∗
6




=




1 0

0 1

−2σ 2 0 1

−6σ 2 0 1

−12σ 2 0 1

−20σ 2 0 1

0 −30σ 2 0 1




·




m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6




(B.15)

B.2.3. Moment preserving nested quadrature

The approximation of integral properties using Laplace EQMOM is performed through the following nested quadrature:

+∞∫

−∞

f (ξ)n(ξ)dξ ≈
P∑

i=1

w i

Q∑

j=1

ω j f
(
ξi + σλ j

)
(B.16)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and λQ are the weights and nodes of 
a Q -nodes “Gauss-Laplace” quadrature rule (see Appendix C).

B.2.4. Single node analytical solution

The case P = 1 has the following analytical solution:

w1 =m0

ξ1 =
m1

m0

σ =

√
m2m0 −m2

1

2m2
0

B.3. Log-normal kernel

B.3.1. Definition

The Log-normal kernel δ
(L)
σ (ξ, ξm) was first used in EQMOM by Madadi-Kandjani and Passalacqua [21]. It is defined on

Äξ = ]0,+∞[ by

δ
(L)
σ (ξ, ξm) =

1

σ ξ
√
2π

exp

(
−

(log(ξ) − log(ξm))2

2σ 2

)
(B.17)

B.3.2. Moments and linear system

Moments of the Log-normal kernel are given by

+∞∫

0

ξkδ
(L)
σ (ξ, ξm)dξ = ξk

mzk
2

with z = eσ 2/2 (B.18)

Moments of the distribution ̃n(ξ) =
∑P

i=1 w iδ
(L)
σ (ξ, ξi) are given by

m̃k =m∗
k z

k2 (B.19)

This can be translated into a linear system

m̃n = A
(L)
n (σ ) ·m∗

n (B.20)

with A
(L)
n (σ ) a diagonal matrix:

A
(L)
i, j (σ ) =

{
zi

2
if i = j

0 otherwise
(B.21)

whose inverse matrix is directly given by

A
(L)−1
i, j (σ ) =

{
z−i2 if i = j

0 otherwise
(B.22)



B.3.3. Low cost nested quadrature

A variable change allows approximating integral properties over a LogN EQMOM reconstruction using Gauss–Hermite

quadratures [21]:

+∞∫

0

f (ξ)n(ξ)dξ ≈
1

√
π

P∑

i=1

w i

Q∑

j=1

ω j f
(
ξi exp

(
σλ j

√
2
))

(B.23)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and λQ are the weights and nodes of 
a Q -nodes Gauss–Hermite quadrature rule (see Appendix C).

Parameters of this nested quadrature do not depend on σ of the main quadrature nodes ξ P . Consequently, ωQ and λQ

only need to be computed once. It is worth noting that this quadrature does not preserve the moments of the distribution 

and only yields exact results for f (ξ) = log(ξ)k, k ∈ {0, . . . , 2 min(P , Q ) − 1}.

B.3.4. Moment preserving nested quadrature

Passalacqua et al. [19] suggested the use of Gauss–Wigert quadratures [36] to preserve the moments of a LogN EQMOM

reconstruction:

+∞∫

0

f (ξ)n(ξ)dξ ≈
P∑

i=1

w i

Q∑

j=1

ω
(σ )

j f
(
ξiλ

(σ )

j

)
(B.24)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ω
(σ )
Q and λ

(σ )
Q are the weights and nodes 

of a Q -nodes Gauss–Wigert quadrature rule of parameter σ (see Appendix C). This quadrature rule must be computed for 
each value of σ , i.e. for each LogN EQMOM reconstruction.

B.3.5. Single node analytical solution

The case P = 1 has the following analytical solution:

w1 =m0

ξ1 =

√
m4

1

m2m
3
0

σ =

√√√√log

(
m2m0

m2
1

)

B.4. Gamma kernel

B.4.1. Definition

The Gamma kernel δ
(Ŵ)
σ (ξ, ξm) was first used in EQMOM by Yuan et al. [18]. It is defined on Äξ = ]0,+∞[ by

δ
(Ŵ)
σ (ξ, ξm) =

ξ (l−1) exp(−ξ/σ )

Ŵ(l)σ l
with l =

ξm

σ
and Ŵ(x) =

+∞∫

0

tx−1e−tdt (B.25)

B.4.2. Moments and linear system

Moments of the Gamma kernel are given by

+∞∫

0

ξkδ
(Ŵ)
σ (ξ, ξm)dξ = Gk(ξm,σ ) =

{
1 if k = 0∏k−1

j=0 (ξm + jσ ) otherwise
(B.26)

Moments of the distribution ̃n(ξ) =
∑P

i=1 w iδ
(Ŵ)
σ (ξ, ξi) are given by the linear system

m̃n = A
(Ŵ)
n (σ ) ·m∗

n (B.27)

with

A
(Ŵ)

i, j (σ ) =





0 if j > i or i = 0 or j = 0

1 if i = 0 and j = 0

A
(Ŵ)

i−1, j−1(σ ) + (i − 1)σ A
(Ŵ)

i−1, j(σ ) otherwise

(B.28)



The inverse of this matrix is given by

A
(Ŵ)−1
i, j (σ ) =





0 if j > i or i = 0 or j = 0

1 if i = 0 and j = 0

A
(Ŵ)−1
i−1, j−1(σ ) − jσ A

(Ŵ)−1
i−1, j (σ ) otherwise

(B.29)

which translates, for n = 6 into




m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6




=




1 0

0 1

0 1σ 1

0 2σ 2 3σ 1

0 6σ 3 11σ 2 6σ 1

0 24σ 4 50σ 3 35σ 2 10σ 1

0 120σ 5 274σ 4 225σ 3 85σ 2 15σ 1




·




m∗
0

m∗
1

m∗
2

m∗
3

m∗
4

m∗
5

m∗
6




(B.30)




m∗
0

m∗
1

m∗
2

m∗
3

m∗
4

m∗
5

m∗
6




=




1 0

0 1

0 −σ 1

0 σ 2 −3σ 1

0 −σ 3 7σ 2 −6σ 1

0 σ 4 −15σ 3 25σ 2 −10σ 1

0 −σ 5 31σ 4 −90σ 3 65σ 2 −15σ 1




·




m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6




(B.31)

B.4.3. Low cost nested quadrature

A Gauss–Laguerre quadrature can be used to approximate integral properties over a Gamma EQMOM reconstruction:

+∞∫

0

f (ξ)n(ξ)dξ ≈
Q∑

j=1

ω j f (σλ j)

P∑

i=1

w i

Ŵ
(

ξi
σ

)λ
ξi
σ −1

j (B.32)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and λQ are the weights and nodes of 
a Q -nodes Gauss–Laguerre quadrature rule of parameter α = 0 (see Appendix C). The advantage of this quadrature is that it 
only requires ωQ and λQ to be computed once. However, this quadrature will not preserve the moments of the distribution.

B.4.4. Moment preserving nested quadrature

A generalized Gauss–Laguerre quadrature preserves the moments of a Gamma EQMOM reconstruction:

+∞∫

0

f (ξ)n(ξ)dξ ≈
P∑

i=1

w i

Ŵ
(

ξi
σ

)
Q∑

j=1

ω
(αi)

j f
(
σλ

(αi)

j

)
(B.33)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ω
(αi)
Q and λ

(αi)
Q are the weights and nodes 

of a Q -nodes Gauss–Laguerre quadrature rule of parameter αi = ξi
σ − 1 (see Appendix C).

The accuracy of this quadrature comes with a cost related to the computation of ω
(αi)
Q and λ

(αi)
Q for each value of αi .

B.4.5. Single node analytical solution

The case P = 1 has the following analytical solution:

w1 =m0

ξ1 =
m1

m0

σ =
m2

m1
−

m1

m0



B.5. Weibull kernel

B.5.1. Definition

The Weibull kernel δ
(W )
σ (ξ, ξm) is defined on Äξ = ]0,+∞[ by

δ
(W )
σ (ξ, ξm) =

1

σ ξm

(
ξ

ξm

) 1−σ
σ

exp

(
−

(
ξ

ξm

)1/σ
)

(B.34)

B.5.2. Moments and linear system

Moments of the Weibull kernel are given by

+∞∫

0

ξkδ
(W )
σ (ξ, ξm)dξ = ξk

mŴ(1 + kσ ) (B.35)

Moments of the distribution ̃n(ξ) =
∑P

i=1 w iδ
(W )
σ (ξ, ξi) are given by

m̃k =m∗
kŴ(1 + kσ ) (B.36)

This can be translated into a linear system

m̃n = A
(W )
n (σ ) ·m∗

n (B.37)

with A
(W )
n (σ ) a diagonal matrix:

A
(W )

i, j (σ ) =

{
Ŵ(1 + iσ ) if i = j

0 otherwise
(B.38)

whose inverse matrix is directly given by

A
(W )−1
i, j (σ ) =

{
1

Ŵ(1+iσ )
if i = j

0 otherwise
(B.39)

B.5.3. Low cost nested quadrature

A Gauss–Laguerre quadrature can be used to approximate integral properties over a Weibull EQMOM reconstruction:

+∞∫

0

f (ξ)n(ξ)dξ ≈
P∑

i=1

w i

Q∑

j=1

ω j f
(
ξiλ

σ
j

)
(B.40)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and λQ are the weights and nodes of 
a Q -nodes Gauss–Laguerre quadrature rule of parameter α = 0 (see Appendix C). The advantage of this quadrature is that it 
only requires ωQ and λQ to be computed once. However, this quadrature will not preserve the moments of the distribution 

and only yields exact results for f (ξ) = ξk/σ , k ∈ {0, . . . , 2 min(P , Q ) − 1}

B.5.4. Moment preserving nested quadrature

One can produce a Gauss quadrature that preserves the moments of Weibull EQMOM approximations:

+∞∫

0

f (ξ)n(ξ)dξ ≈
P∑

i=1

w i

Q∑

j=1

ω
(σ )

j f
(
ξiλ

(σ )

j

)
(B.41)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ω
(σ )
Q and λ

(σ )
Q are the weights and nodes 

of a Q -nodes “Gauss-Weibull” quadrature rule of parameter σ (see Appendix C). The weights and nodes of the nested 

quadrature need to be computed for each value of σ , i.e. for each Weibull EQMOM approximation of the NDF.



B.5.5. Single node numerical solution

The parameters w1 , ξ1 and σ of the one-node Weibull EQMOM must be solution of the following system:

m0 = w1

m1

Ŵ(1 + σ )
= w1ξ1

m2

Ŵ(1 + 2σ )
= w1ξ

2
1

The first equation gives w1 = m0 but no explicit solution exists for the two other equations. One can however notice that 
s = σ

1+σ must be a root of

G(s) =
m2m0

m2
1

−
Ŵ( 1+s

1−s
)

Ŵ( 1
1−s

)2
(B.42)

which is monotonous, defined on s ∈ [0, 1[ and has the following limits

G(0) =
m2m0

m2
1

> 0

lim
s→1−

G(s) < 0

G(s) then admits a single root that can be computed numerically with the Ridder’s method. One can also narrow down, at 
a very low cost, the search interval [0, 1[ by using the property

gn = G

(
n

n + 1

)
=

m2m0

m2
1

−
(2n)!
(n!)2

(B.43)

with n an integer, which induces the following recurrence relation:

gn = c − hn (B.44)

hn+1 =
(
4−

2

n + 1

)
hn (B.45)

with c = m2m0

m2
1

and h1 = 2.

The proposed algorithm to identify the root of G(s) is

1. Compute c = m2m0

m2
1

• if c < 1, cancel the operation as the moments are not realisable;
• if c = 1, s = 0 is the root of G(s);
• if c < 2, set sl = 0, vl = c − 1, sr = 1

2 and vr = c − 2 and go to step 3.
• otherwise, set sl = 0, vl = c − 1 and go to step 2.

2. Initialise i = 1, h = 2 and iterate
(a) increment i by 1;

(a) compute h = h ∗
(
4− 2

i

)

• if h = c, then s = i
i+1 is a root of G(s);

• if h < c, set sl = i
i+1 and vl = c − h;

• if h > c, set sr = i
i+1 , vr = c − h and go to step 3.

3. Apply the Ridder’s method to G(s) on the interval [sl, sr]
(a) compute st1 = 1

2 (sl + sr) and vt1 = G(st1 );

(b) compute st2 = st1 + (st1 − sl)
vt1√

v2t1
−vl vr

and vt2 = G(st2 );

(c) set sl the highest value between sl , st1 and st2 whose image by G is positive;
(d) set sr the lowest value between sr , st1 and st2 whose image by G is negative;
(e) stop the computation if vl < ε(c − 1) with ε a relative tolerance (e.g. ε = 10−10) and consider sl as a root of G(s).

Once the root of G(s) is identified, compute

σ =
s

1− s

ξ1 =
m1

m0Ŵ(1 + σ )



Note that each iteration of the Ridder’s method requires two computations of G(s), that implies four computations of 
the Gamma function – which is quite expensive – by iteration. This explains the interest of the second step which allows to 

narrow down the research interval at hardly no cost.

B.6. Beta kernel

B.6.1. Definition

The Beta kernel δ
(β)
σ (ξ, ξm) was first used in EQMOM by Yuan et al. [18]. It is defined on Äξ = ]0,1[ by

δ
(β)
σ (ξ, ξm) =

ξ (l−1)(1− ξ)(m−1)

B(l,m)
with l =

ξm

σ
andm =

1− ξm

σ
(B.46)

with B(l, m) =
∫ 1
0 x(l−1)(1 − x)(m−1)dx the beta function.

B.6.2. Moments and linear system

Moments of the Beta kernel are given by

1∫

0

ξkδ
(β)
σ (ξ, ξm)dξ = Hk(ξm,σ ) =

{
1 if k = 0
∏k−1

j=0

(
ξm+ jσ
1+ jσ

)
otherwise

(B.47)

Moments of the distribution ̃n(ξ) =
∑P

i=1 w iδ
(β)
σ (ξ, ξi) are given by the linear system

m̃n = A
(β)
n (σ ) ·m∗

n (B.48)

with the elements of A
(β)
n (σ ) being computed from the elements of the matrix relative to Gamma EQMOM, A

(Ŵ)
n (σ ):

A
(β)

i, j (σ ) =
A

(Ŵ)

i, j (σ )

F i(σ )
(B.49)

F i(σ ) =

{
1 if i ≤ 1

(1+ (i − 1)σ )F i−1(σ ) otherwise
(B.50)

The inverse of this matrix is also easily defined from A
(Ŵ)−1
n (σ ):

A
(β)−1
i, j (σ ) = A

(Ŵ)−1
i, j (σ )F j(σ ) (B.51)

B.6.3. Low cost nested quadrature

A Gauss–Legendre quadrature can be used to approximate integral properties over a Beta EQMOM reconstruction:

1∫

0

f (ξ)n(ξ)dξ ≈
1

2

P∑

i=1

w i

B (αi+1, βi+1)

Q∑

j=1

ω j f

(
1− λ j

2

)(
1 − λ j

2

)αi
(
1+ λ j

2

)βi

(B.52)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and λQ are the weights and nodes 

of a Q -nodes Gauss–Legendre quadrature rule (see Appendix C); αi = ξi−σ
σ and βi = 1−ξi−σ

σ . This nested quadrature only 
requires ωQ and λQ to be computed once, but will not preserve the moments of the distribution.

B.6.4. Moment preserving nested quadrature

A Gauss–Jacobi quadrature will preserve the moments of the distribution:

1∫

0

f (ξ)n(ξ)dξ ≈ 2
σ−1
σ

P∑

i=1

w i

B (αi+1, βi+1)

Q∑

j=1

ω
(αi ,βi)

j f


1− λ

(αi ,βi)

j

2


 (B.53)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ω
(αi ,βi)
Q and λ

(αi ,βi)
Q are the weights 

and nodes of a Q -nodes Gauss–Jacobi quadrature rule of parameters αi = ξi−σ
σ and βi = 1−ξi−σ

σ (see Appendix C). The 

moment-preserving property of this quadrature comes with the need to compute ω
(αi ,βi)
Q and λ

(αi ,βi)
Q for each node of the 

main Beta EQMOM quadrature.



B.6.5. Single node analytical solution

The case P = 1 has the following analytical solution:

w1 =m0

ξ1 =
m1

m0

σ =
m2

1 −m0m2

m0(m2 −m1)

Appendix C. Gaussian quadratures

A Q-node Gaussian quadrature allows to approximate a function integral as a weighted sum of point wise values of this 
function over an interval I:

∫

I

f (x)p(x)dx ≈
Q∑

j=1

ω j f
(
λ j

)
(C.1)

p(x) is a weight function, and the quadrature rule yields accurate integral evaluations if f (x) = xk, k ∈ {0, . . . , 2Q − 1}. 
The computation of the weights ωQ and nodes λQ is performed as detailed in 2.2 by considering polynomials that are 
orthogonal with respect to the weight function p(x).

Table C.1 details for each Gauss quadrature:

• the weight function p(x);
• the integration support I;
• the computation of recurrence coefficients aQ −1 and bQ −1;
• the zero-th order moment P0 of p(x).

The recurrence coefficients are used to construct the Jacobi matrix J Q associated with p(x) on I (see Eq. (6)). The

nodes λQ are the eigenvalues of J Q , and the weights ωQ are given by ω j = P0v
2
1, j with v1, j the first component of the 

normalised eigenvector belonging to the eigenvalue λ j .

Table C.1

Specifics of Gauss quadratures used for EQMOM nested quadratures.

Gauss- I p(x) aQ and bQ P0

Hermite R exp
(
−x2

)
ak = 0

bk = k/2

√
π

Laplacec R exp (−|x|) /2

Apply Chebyshev algorithm to

P 2Q −1 with Pk =

{
0 if k odd

k! if k even

1

Laguerref R
+ xα exp (−x) a0 = 1+ α

ak = 2+ ak−1

bk = k(k + α)

Ŵ (1+ α)d

Wigerta,f R
+ 1

γ x
√
2π

exp
(

log2(x)

2γ 2

)
ak =

((
z2 + 1

)
z2k − 1

)
z2k−1

bk =
(
z2k − 1

)
z6k−4

z = exp(γ 2/2)

1

Weibullc,f R
+ γ xγ−1 exp

(
−xγ

) Apply Chebyshev algorithm to
P 2Q −1 with Pk = Ŵ (1+ k/γ )

1

Legendreb ]−1,1[ 1 ak = 0

bk =
k2

4k2 − 1

2

Jacobib,f ]−1,1[ (1−x)α (1+x)β ak =
β2−α2

δk(δk+2)

bk =
4k(k+α)(k+β)(k+α+β)

δ2
k
(δ2

k
−1)

δk = 2k+α+β

2α+β+1×
B (α+1, β+1)e

a Wilck [36].
b Shen et al. [37].
c Not standard Gauss-quadrature.
d Ŵ(x) =

∫ +∞
0 tx−1e−tdt .

e B(x, y) = Ŵ(x)Ŵ(y)
Ŵ(x+y)

.

f α > −1, β > −1, γ > 0.



Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2018 .03 .027.
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