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� A biological population balance model is solved using class and moment methods.
� Homogeneous chemostat and heterogeneous fedbatch cultures are simulated.
� Methods are compared through accuracy, stability and computation time.
� The Maximum Entropy method is found to be unstable in the present test-cases.
� QMOM and EQMOM are well suited and have major advantages against class method.
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A predictive modelling for the simulation of bioreactors must account for both the biological and hydro-
dynamics complexities. Population balance models (PBM) are the best approach to conjointly describe
these complexities, by accounting for the adaptation of inner metabolism for microorganisms that travel
in a large-scale heterogeneous bioreactor. While being accurate for solving the PBM, the Class and Monte-
Carlo methods are expensive in terms of calculation and memory use. Here, we apply Methods of
Moments to solve a population balance equation describing the dynamic adaptation of a biological pop-
ulation to its environment. The use of quadrature methods (Maximum Entropy, QMOM or EQMOM) is
required for a good integration of the metabolic behavior over the population. We then compare the accu-
racy provided by these methods against the class method which serves as a reference. We found that the
use of 5 moments to describe a distribution of growth-rate over the population gives satisfactory accu-
racy against a simulation with a hundred classes. Thus, all methods of moments allow a significant
decrease of memory usage in simulations. In terms of stability, QMOM and EQMOM performed far better
than the Maximum Entropy method. The much lower memory impact of the methods of moments offers
promising perspectives for the coupling of biological models with a fine hydrodynamics depiction.
1. Introduction centrations. Examples are the iJO1366 model for Escherichia coli
The large-scale simulation of bioreactors is currently a challeng-
ing issue. Such simulations must account for both (i) the (multi-
phase) hydrodynamics and (ii) the metabolic behaviour of the
biological population carried by the fluid. The first can be achieved
through the use of widespread CFD softwares which require signif-
icant computational power. The second can be addressed with
advanced cell models which result from community efforts to inte-
grate genome-scale reconstructions of a strain metabolic network
and depict thousands of intracellular reactions and metabolite con-
(Orth et al., 2011) and the consensus YEAST model for Saccha-
romyces cerevisiae (Heavner et al., 2012; Heavner et al., 2013).
These models describe state of the art knowledge of a cell
metabolism, however their implementations require to solve
either cumbersome optimization problems to access a steady-
state cell-functioning, or to solve dynamically the metabolite con-
centrations in a cell that experiences exogeneous perturbations.

Even though the computational power increased significantly
over the past few decades, it is still not possible to couple the
CFD approach with a biological modelling that fully embraces the
biological complexity. Such an approach is numerically untractable
as it requires to solve dynamically the intracellular concentrations
for each cell in a bioreactor with an Euler-Lagrange framework.
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Notation

Roman
C concentration (kg.m�3)
H Shannon entropy
K biological affinity constant (kg.m�3)
L quadrature node abscissae (h�1)
m moment of distribution n (kg.m�3.h�k)
n number density function (h.kgX.m�3)
N number of resolved moments
NC number of classes
Nc number of compartments
P order of moment methods
q specific reaction rate (mol.kg�1

X .h�1)
Q flow rate (m3.h�1)
R reaction rate (kg.m�3.h�1)
T time constant of adaptation (h)
V compartment volume (m�3)
w quadrature node weight (kgX.m�3)
Y stoichiometric molar coefficient (mol.mol�1)

Subscript and superscript
~x population mean value
x� equilibrium value

xa achieved value
xA acetate
xG glucose
xi inhibition
xk moment order
xm compartment index
xn compartment index
xO oxygen
xT threshold value

Greek symbols
e turbulent energy dissipation rate (W.kg�1)
j PDF kernel
l growth rate ðgX :g�1

X :h�1Þ
m kinematic viscosity ðm2:s�1Þ
u polynomial coefficient
U specific uptake rate ðg:g�1

X :h�1Þ
W environmental limitation coefficient
r standard deviation (h�1)
f rate of change of specific growth rate (h�2)
Therefore, two simplified approaches are usually applied. On the
one hand, one can neglect the spatial heterogeneity and solve a
complex metabolic model in homogeneous batch or chemostat cul-
tures (Meadows et al., 2010; Matsuoka and Shimizu, 2013). On the
other hand, one will describe the hydrodynamic complexity jointly
with a simplified biological approach such as either structured or
unstructured kinetic models (Bezzo et al., 2003; Elqotbi et al.,
2013; Lu et al., 2015).

Concentration gradients are known to be responsible for meta-
bolic dysfunctions in large-scale reactors (Enfors et al., 2001),
therefore we should avoid the first approach and describe the spa-
tial heterogeneities. However, the use of kinetic models should be
discarded too. Indeed, from the point of view of a cell travelling in
these heterogeneous concentrations fields, the concentration sig-
nal is fluctuating (Linkès et al., 2014; Haringa et al., 2016). This
make kinetic models inappropriate as they are usually based on
the Monod kinetics law which reflects a steady-state equilibrium
between a population and its environment. By making use of a
Monod law, the kinetic models have ‘‘been over simplified by
allowing instantaneous adaptation of the cell to the abiotic envi-
ronment” (Silveston et al., 2008).

In previous work (Pigou and Morchain, 2015), we stepped back
in both the hydrodynamic description by using a Compartment
Model Approach (Cui et al., 1996; Mayr et al., 1993; Vrábel et al.,
2000; Vrábel et al., 2001) and in the metabolic description of
E. coli by simplifying the key reactions of the central carbon meta-
bolism into a 6 reactions model inspired by the model proposed by
Xu et al. (1999). More importantly, we introduced the use of a Pop-
ulation Balance Model (PBM) as a key modelling tool that allows
describing simultaneously both (i) the concentration gradients,
(ii) a dynamic adaptation of cells to the fluctuating conditions they
experience along their trajectories and (iii) the metabolic impact of
a disequilibrium between a cell and its local environment. This
approach has been successfully challenged against experimental
data in lab-scale batch culture and industrial-scale heterogeneous
fedbatch culture. More recently, we improved the PBM to account
for an experimentally observed stochastic diversity related to cell-
division (Morchain et al., in press).
Until now, we solved the PBM using a class method (also known
as fixed pivot method, Kumar and Ramkrishna (1996a, 2001)) with
at least 60 classes to span the entire range of possible values for the
chosen variable (i.e. the maximum growth-rate achievable by a cell
provided enough nutrients are available). Each class represents a
scalar that must be transported by the hydrodynamic framework.
While transporting a hundred classes within a 70 compartments
model (Pigou and Morchain, 2015) was perfectly feasible, doing
the same in a CFD simulation would be prohibitively expensive.

The current paper thus makes the focus on improving the
numerical tractability of the PBM, through the use of the Method
of Moments (MOM), in order to increase the allowed level of spa-
tial accuracy. Instead of performing a direct resolution of the pop-
ulation balance equation, the MOM describes the evolution of the
first moments of a Number Density Function (NDF). However, it
will be of interest to perform a reverse operation and to recover
an approximation of the NDF from a finite set of its moments; this
is known as a truncated moment problem (Abramov, 2007).

Many methods are available to tackle this problem. A review of
such methods is available (John et al., 2007) though new methods
or improvements are available since its publication. More recently,
Lebaz et al. (2016) compared the most common approaches which
are Kernel Density Element Method (KDEM), Spline-based method,
and the Maximum Entropy (MaxEnt) method applied to the case of
a depolymerization process. The KDEM approximates the unknown
NDF as the sum of weighted Kernel Density Functions (KDF). The
identification of the weights is performed through a constrained
minimization procedure, which requires a high number of
moments to prevent an underdetermined problem and the multi-
plicity of solutions. The spline method (John et al., 2007) leads to
a piece-wise polynomial reconstruction, but the resulting recon-
struction is highly dependent on numerical parameters, and can
lead to negative values of the reconstructed NDF. For these reasons,
the KDEM and spline methods will be discarded in the current
work.

The MaxEnt method (Mead and Papanicolaou, 1984; Tagliani,
1999) was point out as efficient and accurate, even with a low
number of moments, by Lebaz et al. (2016). It is however



ill-conditioned at the boundaries of moment space (Massot et al.,
2010), but this can be handled by providing some adjustments of
the method (Vié et al., 2013). Finally, we consider the recent
EQMOM method (Chalons et al., 2010; Yuan et al., 2012;
Marchisio and Fox, 2013) which constitutes an interesting fusion
of KDEM with the QMOM approach (Marchisio et al., 2003a;
Marchisio et al., 2003b; Marchisio et al., 2003c). This method has
proven to be stable and efficient –in particular near the frontier
of the realizable moment space where MaxEnt is ill-conditioned–
but requires to make assumptions on the shape of the
reconstruction.

The current work is focused on assessing the methods QMOM,
EQMOM and MaxEnt against the already used classes method, in
the perspective of running predictive and numerically tractable
bioreactor simulations.All thesemethodshavebeenused toperform
the simulation of a homogeneous chemostat culture stressedwith a
dilution rate shift (Kätterer et al., 1986). After, themethods are com-
pared in terms of their numerical efficiency, their accuracy and their
stability in this peculiar configuration. Finally, the moment and
classes methods are compared on the configuration investigated
by Pigou and Morchain (2015) of a heterogeneous fedbatch culture
described by Vrábel et al. (1999, 2000). For this last, the heterogene-
ity is taken into account by a compartment model approach.

2. Models and methods

2.1. Local mass balance

The basis in the modelling of bioreactors is the formulation of
local mass balances. They describe the evolution of local concen-
trations as a consequence of (i) transport by the carrying fluid
and (ii) consumption or production by the biological phase. As in
previous work (Pigou and Morchain, 2015), we will hereafter
describe the hydrodynamics using Compartment Model Approach
(CMA). Let Cn (kg.m�3) be the vector of mass concentrations within
the n-th compartment, Vn the volume (m3) of that compartment,
and Qn;m (m3.h�1) the volume flow rate going from the n-th to
the m-th compartment. The total number of compartments is Nc .
Then, the mass balance equation in compartment n is given as:

@VnCn

@t
þ Cn

XNc

m¼1

ðQn;mÞ �
XNc

m¼1

ðQm;nCmÞ ¼ VnRðCnÞ ð1Þ

Our contribution is to express the vector of biological reaction
rates RðCÞ (kg.m�3.h�1) as the sum of the substrate uptake rates,
or product production rates, due to all cells considering their indi-
vidual physiological states. Let l (h�1) be the biological growth
capability of a cell (i.e. the growth rate they can achieve if permit-
ted by the nutrient availability), we will distinguish each individual
upon this value. Different cells, having different values of l in a
similar environment, will exhibit different metabolic behaviours.
Then, in order to express the bioreaction rates at the scale of the
biological population, one must know the statistical distribution
of the property l over that population, and integrate the uptake
or production rates over that distribution:

RiðCnÞ ¼
Z þ1

0
nðlÞUiðl;CnÞdl ð2Þ

where nðlÞ is the NDF defining the fraction of the biological phase
whose specific growth rate is l. The first two moments of this NDF
are defined as following:Z þ1

0
nðlÞdl ¼ X ð3ÞZ þ1

0
lnðlÞdl ¼ ~lX ð4Þ
with X the total biomass concentration (kg.m�3) and ~l the popula-
tion mean growth rate (h�1). In the current work, we consider the
metabolic behaviour of Escherichia coli and the vector C actually
consists in a vector of Glucose (G), Acetate (A) and Oxygen (O)
concentrations.

C ¼
CG

CA

CO

2
64

3
75 ð5Þ

We will also consider scalar variables to transport information
about the distribution nðlÞ as explained afterwards.

Therefore, the glucose uptake rate UGðl;CÞ, the oxygen uptake
rate UOðl;CÞ and the acetate uptake/production rate UAðl;CÞ will
be outcomes of the metabolic model calculation procedure. The
later uses as inputs (i) the specific potential growth rate of individ-
ual, l; (ii) the vector of concentrations in the liquid phase C, and
(iii) the equilibrium law l� ¼ f ðCÞ. The growth rate at equilibrium
l� is the growth rate that cells would exhibit at steady state in an
environment defined by the vector of concentrations C. Such
expressions are known from chemostat experiments and typically
take the form of a multi-component Monod-Law, taking here into
account the inhibitory effect of acetate:

l� ¼ lmax
CG

CG þ KG

CO

CO þ KO

K i;A

CA þ K i;A
ð6Þ

with KG and KO the affinity constants (kg.m�3) of the biomass
toward glucose and oxygen, and K i;A the inhibitory constant of
growth by acetate.

A noticeable point is that the substrate uptake rate is not alge-
braically related to the specific growth rate as it cannot be assumed
in general that cells are at equilibrium with their environment
(Ferenci, 1996). Therefore, our approach is consistent with theoret-
ical considerations (Perret, 1960) and experimental observations
(Abulesz and Lyberatos, 1989; Li, 1982; Silveston et al., 2008) indi-
cating that the growth and uptake rates are decoupled in the
dynamic regime whilst an algebraic relation exists between them
at steady state.

The second point in terms of modelling resides in the calcula-
tion of the NDF nðlÞ that defines the concentration of biomass
whose potential growth rate is l. This calculation will be
addressed in a dedicated paragraph.
2.2. Calculation procedure for the metabolic reaction rates

The procedure is almost identical to that presented in a previ-
ous paper (Pigou and Morchain, 2015), therefore, only the key fea-
tures of the metabolic model, and the few differences of the
calculation procedure are detailed here.

The first step of that procedure is to compute the actual growth
rate of each cell, by taking into account its growth capabilities (see
Section 2.3), and a potential limitation related to nutrient availabil-
ity. In the previous work, we defined this actual growth rate of a
cell, la, as the minimum between its biological growth capability,
l, and the environment equilibrium growth rate l� (given by the
Monod law, Eq. (6)): la ¼ minðl�;lÞ. However, we recently shifted
this formulation toward a more meaningful and physical one,
based on a limitation by the micromixing, which proved to be con-
sistent with experimental studies of membrane transporters at
limiting nutrient concentrations (Ferenci, 1996; Ferenci, 1999).
The detailed explanation for this change is given in Morchain
et al. (in press).

We then defined a threshold glucose concentration, CGT , around
which micromixing will start to be a limiting factor. As long as the
bulk substrate concentration is significantly higher than this



threshold concentration, cells will be fed enough by micromixing
to be able to achieve their potential growth rate.

CGT ¼ RG � 17
m
e

� �0:5
ð7Þ

The term 17
ffiffiffiffiffiffiffiffi
m=e

p
is proposed by Baldyga and Bourne (1999) to

evaluate the micro-mixing time-scale, and depends on the fluid
viscosity, m (m2/s), and the turbulent energy dissipation rate, e,
whose value usually ranges from 0:5 to 10 W/kg depending on
the bioreactor stirring.

As RG is an output of the metabolic calculation procedure (Eq.
(2)), which itself depends on la, and considering that we only need
the order of magnitude of the limiting concentration, we provide
the following rough approximation of RG for the estimation of CGT :

RG � MG

YXGMX

Z þ1

0
lnðlÞdl ð8Þ

With YXG the molar yield of glucose to cell conversion

(molX :mol�1
G ), MX the molar mass of biomass (MX ¼ 113:1 gX :

mol�1
X considering the typical chemical formula C5H7NO2) and MG

the molar mass of glucose (MG ¼ 180:2 gG:mol�1
G ).

Now, following Morchain et al. (in press), the actual growth rate
is given by:

la ¼ Wl ð9Þ
where the coefficient W reads:

W ¼ 1� e�CG=CGT ð10Þ

As a recall, the estimation of la along with the calculation of l�

is the very first step of the calculation procedure of the metabolic
model, as detailed in Pigou and Morchain (2015) which explains
why the choice of la formulation is of importance. After estimating
the actual -effectively achieved- growth rate of a cell, the calcula-
tion procedure of the metabolic model is exactly the one described
in the previous work.

This metabolic model roughly describes the central metabolism
of Escherichia coli, it accounts for:

� Anabolism based on either glucose or acetate as a carbon
source, leading to the formation of new cells,

� Oxidative catabolism on both substrates for energy production,
� Fermentative catabolism of glucose, leading to the production
of energy, and acetate as a by-product,

� Overflow metabolism, leading to production of acetate when
glucose is over-consumed.

Each pathway is simplified into the following set of reactions:

Gþ YEGE !q
G
ana YXGX ðR1Þ

Aþ YEAE !q
A
ana YXAX ðR10 Þ

Gþ YOGO !q
G
oxy
Yo

EGE ðR2Þ

Aþ YOAO !q
A
oxy
Yo

EAE ðR20 Þ

G !
qG
ferm

Y f
EGEþ YAGA ðR3Þ

G !q
G
over YAGA ðR4Þ
G: Glucose, E: Energy, A: Acetate, O: Oxygen, X: Biomass. YBA is
the stoichiometric molar coefficient in molB=molA. qG

a and qA
a are

the specific reaction rates for reactions respectively based on glu-

cose (molG:g�1
X :h�1) and on acetate (molA:g�1

X :h�1).
The calculation procedure gives access to the specific reaction

rates, and is based on:

� The growth capability of a cell (l), whose evolution is described
by the Population Balance Model (see Section 2.3),

� The environmental conditions (G, A and O concentrations) and
the W coefficient,

� An assumption of non-accumulation within the cytoplasm. In
particular, the rate of energy production is balanced by the rate
of energy consumption.

2.3. Population balance model

External and intrinsic perturbations are known to produce
heterogeneity among the cell population. In order to track this
diversity, the usual mathematical approach is to refer to a popula-
tion balance model. The originality of our approach resides in that
the discriminating factor is the specific growth rate of individuals.
Recent observations have proved that this variable is actually dis-
tributed in a cell population (Yasuda, 2011). This formulation is
advantageous since the relationship between the growth rate and
the metabolic reaction rates is much more natural than when the
size or mass of the cell is chosen as the discriminating parameter
(Pigou and Morchain, 2015; Morchain et al., in press). The Popula-
tion Balance Equation (PBE) for the specific growth rate distribu-
tion nðlÞ is here given for a homogeneous case; terms
accounting for the transport might be added on the left hand side
depending on the hydrodynamic framework:

@nðlÞ
@t

¼ � @

@l
nðlÞfðlÞ½ � þ

Z þ1

0
bðl;l0Þnðl0ÞWl0dl0 ð11Þ

The first term in the right-hand side of Eq. (11) is a convection
term in the l-space instead of the physical space. It describes the
fact that individuals are able to adapt their specific growth rate
in response to insufficient or excessive substrate concentrations.
We refer to this term as the adaptation term. In the adaptation
term, fðlÞ refers to a velocity in the l-space or equivalently to
the rate of change of l over time. This velocity can be either posi-
tive or negative depending on whether the environment is respec-
tively rich or poor in nutrients, compared to what a cell is used to.
In previous work, a general form for fðlÞ was proposed and vali-
dated against experimental data sets:

fðlÞ ¼ 1
T
þ l

� �
l� � lð Þ ð12Þ

The second term of Eq. (11) is often referred to as the birth and
death term in PBM. bðl;l0Þ is a Probability Density function (PDF)
which defines the probability that a mother cell having a specific
growth rate l0 produces a daughter cell whose specific growth
rate is l. The analysis of recent experimental data revealed that
b can be modeled using a skew-normal distribution (Yasuda,
2011; Morchain et al., in press) whose parameters are given in
Appendix A.

Instead of looking for an analytic solution for the PBE (Eq. (11)),
we will try to solve that equation numerically. The most
straightforward method simply consists in a discretization of the
l-space using either fixed (Kumar and Ramkrishna, 1996a) or
moving (Kumar and Ramkrishna, 1996b) meshes. These methods
tend to be expensive as soon as heterogeneous systems are consid-
ered. However, they accurately describe the solution distribution
of the PBE and allow an easy coupling with the transport and



reaction parts of the modelling (Eq. (1)). We used to apply these
fixed mesh (also known as Methods Of Classes, MOC), as detailed
in previous papers (Morchain et al., 2013; Pigou and Morchain,
2015). We will here focus on applying methods of moments and
challenging their results against the already validated MOC. Know-
ing the law for the evolution of the distribution (Eq. (11)), the first
step to apply moment methods is to transform the PBE so that it
expresses the evolution of the distribution’s moments. The k-th
order moment of the distribution nðlÞ is defined as:

mk ¼
Z þ1

0
lknðlÞdl ð13Þ

The Appendix A details how this definition and the PBE lead to
the following law of moments evolution:

@mk

@t
¼ k

l�

T
mk�1 þ l� � 1

T

� �
mk �mkþ1

� �
þWm1Bkð~lÞ ð14Þ

� Bk is the k-th order moment of the PDF bðl;l0Þ whose formula-
tion is also given in Appendix A.

� ~l is the population mean growth rate, defined in terms of
moments by:
~l ¼
R þ1
0 lnðlÞdlRþ1
0 nðlÞdl ¼ m1

m0
ð15Þ

@mk
@t depends on mkþ1 which leads to an unclosed formulation. To

tackle this issue, McGraw (1997) introduced the Quadrature
Method of Moments (QMOM) which is based on a Gaussian
quadrature whose nodes and weights are chosen so that the N first
moments of the PDF are well computed by the quadrature:

mk ¼
XP
i¼1

wiL
k
i 8k 2 f0; . . . ;N � 1g ð16Þ

P is here the order of the method, which deals with N ¼ 2 � P
number of moments. The core of the method lies in the identifica-
tion of weights wi and abscissas Li of the Gaussian quadrature.
These parameters allow an exact computation of moments of order
ranging from 0 to N � 1 and usually give satisfactory approxima-
tion of higher order moments. This method then allows closing
the formulation given by Eq. (14).

We introduce here one refinement of the PBE compared to the
one described in Pigou and Morchain (2015). The moment formu-
lation of the PBE (Eq. (14)) is correct only if the time constant T is
not dependent on l. However, we used in Pigou and Morchain
(2015) one time constant Tu ¼ 1:9h for individuals that are moving
upward in the l-space, and a different time constant Td ¼ 6:7h for
individuals moving downward. This formulation implies that the
decrease of growth capabilities in poor environments is slower
than the increase of these capabilities in rich environments, and
this fact is required to allow a good fitting of experimental data.
In the current work, and in order to make use the moment formu-
lation of the PBE given in Eq. (14), we define the time constant Tm

as the mean value of the functional TðlÞ that we used previously:

TðlÞ ¼ Tu if l < l�

Td otherwise

�
ð17Þ

Tm ¼ m�1
0

Z
Xl

TðlÞnðlÞdl ð18Þ

¼ aTu þ ð1� aÞTd with a ¼ m�1
0

Z l�

0
nðlÞdl ð19Þ

We then actually make use of the PBE given in Eq. (20) to
describe the evolution of moments. Similarly, we use the time
constant Tm to describe the evolution of the distribution in the
class method in order to have consistent formulations between
methods.

@mk

@t
¼ k

l�

Tm
mk�1 þ l� � 1

Tm

� �
mk �mkþ1

� �
þWm1Bkð~lÞ ð20Þ
2.4. Reconstruction methods

In the present case, and it seems very likely that this would
extend to many biological applications, the calculation of the inte-
gral reaction term in Eq. (2) cannot be expressed in terms of
moments of nðlÞ, at least because the uptake rates Uiðl;CÞ are
not continuously differentiable with respect to l. To tackle this
issue, we must construct a suited quadrature rule that will be used
to approximate all integrals of the following form:Z
Xl

f ðlÞnðlÞdl �
X
i

wif ðLiÞ ð21Þ

wherew and L are the weights and abscissas of the quadrature rule.
Different methods exist to provide a quadrature rule with the

constraint that this rule does compute accurately the known N
moments of the distribution:Z
Xl
lknðlÞdl ¼

X
i

wiL
k
i k 2 f0; . . . ;N � 1g ð22Þ

Each method formulates some assumptions about the proper-
ties of the NDF nðlÞ, and identify a unique NDF n̂ðlÞ that matches
the set of known moments and the formulated assumptions. We
will refer to n̂ðlÞ as a reconstruction – or approximation – of
nðlÞ. Knowing the properties of n̂ðlÞ, obtaining the quadrature rule
w and L will be quite straightforward.

We will then use this rule to perform the estimation of higher
order unknown moments (Eq. (14)) as well as the numerical com-
putation of unclosed integral terms (Eq. (2) and (19)).

2.4.1. The QMOM method
TheQMOMmethod is the easiestmethod to implement. Itmakes

the assumption that the moment set is at the frontier of the realiz-
able moment space. This implies that the distribution n̂ðlÞ is a dis-
crete distribution, written as the sum of P ¼ N=2 weighted Dirac
distributions. The reconstructed NDF is then given by:

n̂ðlÞ ¼
XP
i¼1

widðl� LiÞ ð23Þ

Thus the reaction term (Eq. (2)) can be approximated by:

RðCÞ �
XP
i¼1

wiUðLi;CÞ ð24Þ

Due to the complexity of the function Uðl;CÞ, a high order
quadrature will be required, which implies the need of a high num-
ber of resolved moments to correctly approximate the integral
term in Eq. (2).

The computation of the weights wi and abscissas Li of the
quadrature nodes is performed using either the Product-
Difference Algorithm (PDA) or the Wheeler Algorithm (WA) as
implemented by Marchisio and Fox (2013), with some code tuning
to improve efficiency.

With this method, a generic quadrature is given by:Z
Xl

f ðlÞnðlÞdl �
XP
i¼1

wif ðLiÞ ð25Þ

2.4.2. The EQMOM method
Yuan et al. (2012) introduced the Extended Quadrature Method

of Moments (EQMOM) which consists in coupling QMOM with the



Kernel Density Element Method (KDEM) in which the NDF is
reconstructed as the weighted sum of Kernel Density Functions.

The reconstructed NDF, using a P-nodes EQMOM reconstruc-
tion, has the following expression:

n̂ðlÞ ¼
XP
i¼1

wijðl; Li;rÞ ð26Þ

This method then requires the first N ¼ 2P þ 1 moments of the
NDF, in order to identify uniquely the value of wi; Li and r. The fol-
lowing kernels are known to be compatible with the EQMOM pro-
cedure: Gaussian jG (Chalons et al., 2010), Log-Normal jL (Madadi-
Kandjani and Passalacqua, 2015), Beta jb and Gamma jC

(Athanassoulis and Gavriliadis, 2002; Yuan et al., 2012) kernels.
We tested each of these kernels but we will only focus on the Gaus-
sian kernel in this paper. Its expression is given hereafter:

jGðl; L;rÞ ¼ 1
r
ffiffiffiffiffiffiffi
2p

p e�
ðl�LÞ2
2r2 ð27Þ

This method relies on the Wheeler algorithm (Marchisio and
Fox, 2013), in order to identify the values ofw and L. On top of that,
a non-linear solver must identify the unique value of rwhich leads
to a reconstructed distribution whose moments match the
expected values. We implemented a bisection method to find
numerically the root of the objective function that quantify the
good agreement of the reconstruction with the set of known
moments. We also implemented analytical solutions for P ¼ 1
and P ¼ 2 as described by Marchisio and Fox (2013).

The integration of the metabolic behaviour over the population
(Eq. (2)) is performed by using a 10-nodes Gauss-Hermite quadra-
ture for each node of the Gaussian EQMOM reconstruction as sug-
gested by Yuan et al. (2012).

With this method, a generic quadrature is given by:

Z
Xl
f ðlÞnðlÞdl �

XP
i¼1

wi

XP0
j¼1

bjffiffiffiffi
p

p f Li þ ajr
ffiffiffi
2

p� �
ð28Þ

wi and Li and r are the weights and nodes returned by the EQMOM
procedure. aj and bj are the nodes and weights of a Gauss-Hermite
quadrature of order P0.

2.4.3. The Maximum Entropy method
Given a finite realizable set of N moments, there exists an infi-

nite set of NDF with the same set of first N moments (Mead and
Papanicolaou, 1984). Therefore, the goal of any reconstruction
method is to choose one plausible NDF out of this infinite set of
possibilities. While the EQMOM method enforces the expected
shape of the reconstruction by choosing arbitrarily a specific ker-
nel, the Maximum Entropy method aims to find, out of all possible
reconstructions, the one that maximizes the Shannon Entropy
defined for any PDF f as:

H½f � ¼ �
Z þ1

�1
f ðxÞ lnðf ðxÞÞdx ð29Þ

Tagliani (1999) describes the application of this method for the
specific case of a positive PDF defined on the closed support
x 2 ½0;1�. This method can be extended to any finite support ½a; b�
without loss of generality by a mere linear change of variable.

The reconstructed distribution whose Shannon entropy is the
highest takes the following form (Mead and Papanicolaou, 1984;
Tagliani, 1999):

n̂ðlÞ ¼ exp �
XP
i¼0

uili

 !
ð30Þ

With P ¼ N � 1 the highest order of known moments.
The key issue is to identify the values of the polynomial coeffi-
cients ui, which is achieved through the minimization of the fol-
lowing function (Kapur, 1989; Mead and Papanicolaou, 1984):

Cðu1; . . .uPÞ ¼
XP
k¼1

uk
mk

m0
þ ln

Z 1

0
exp �

XP
k¼1

uklk

 !
dl

 !
ð31Þ

The C function is both convex and smooth which makes its min-
imization possible through an iterative Newton-Raphson proce-
dure, with the necessary and sufficient condition that the
moment sequence is realizable and not too close from the frontier
of the realizable moment space, otherwise the Hessian matrix will
be ill-conditioned.

The Jacobian and Hessian matrices of this function are easily
expressed, but they require the numerical computation of the fol-
lowing integrals:

m̂k ¼
Z 1

0
lk exp �

XP
i¼0

uil
i

 !
dl k 2 f0; . . . ;2Pg ð32Þ

These integrals must be evaluated numerically as no analytic
form exists as soon as P > 2, which is done using the adaptative
support quadrature proposed by Vié et al. (2013). The fact that
such integrals must be numerically computed, at each step of
the Newton-Raphson procedure, which itself is called at each
time-step, explains why we marked that method as computa-
tionally intensive on Fig. 1. However as moments evolve in a
continuous way over time, the ui will also evolve continuously,
and the initial guess of the Newton-Raphson procedure is set
as the solution of the previous time-step, leading to a fast
convergence.

The number of nodes for the resulting quadrature rule actually
depends on the results of the procedure described by Vié et al.
(2013). We used a 15 nodes Gauss-Legendre quadrature for each
sub-intervals identified by their procedure. The number of sub-
interval, s, is variable depending on the ui values: s 2 f1; . . . ;Ng.
Thus, a generic quadrature is given by:

Z
Xl

f ðlÞnðlÞdl�
Xs
i¼1

XP0
j¼1

bj
xmax;i�xmin;i

2
f

ajþ1
2

ðxmax;i�xmin;iÞþxmin;i

� �

ð33Þ

with

� s the number of sub-intervals returned by the procedure
described by Vié et al. (2013) (s 6 N),

� xmin;i and xmax;i the minimum and maximum limits of the i-th
sub-interval,

� aj and bj the nodes and weights of a Gauss-Legendre quadrature
of order P0.

Finally, in our following simulations, we did encounter cases
where the moment set was too close from the frontier of the
moment space which led to ill-conditioned Hessian matrices. We
first performed the reconstruction on the support ½0;K � lmax� with
K ¼ 1:5, however we observed that our distributions only span a
tiny fraction of this interval at each time. This often led to moment
sets whose last moment were close to their upper or lower bound
in the moment space (we underlined this by calculating the canon-
ical moments using the QD algorithm from Dette and Studden
(1997)). We then decided to adapt dynamically the value of K
between 0 and 2 in order to stretch the support of the reconstruc-
tion so that the moments of the distribution are always far enough
from the frontier of the moment space, which then allows a fast
and accurate convergence of the MaxEnt method.



Fig. 1. Summary of applied methods to couple the population balance with transport and reaction. �Numerically expensive methods. P: Order of moment method (positive
integer). P0 : Order of nested quadrature (we use P0 ¼ 10 (EQMOM) or P0 ¼ 15 (MaxEnt)).
The rules for the evolution of K, from time step ðnÞ to timestep
ðnþ 1Þ are based on the value of the last canonical moments
pP 2 ½0;1� computed from the set of known moments m0; . . . ;mP:

� If pðnÞ
P < 0:4 : Kðnþ1Þ ¼ 0:96 � KðnÞ.

� If pðnÞ
P > 0:6 : Kðnþ1Þ ¼ 1:04 � KðnÞ.

This proposition is most probably not universal and might only
work in our specific application cases.

2.5. Simulation software

All following simulations are performed using ADENON, a user-
friendly simulation software we developed using the environment
provided by MATLAB R2016a. This software is mainly focused on
the simulation of bioreactors, by applying our PBM/Metabolic bio-
logical models within a hydrodynamic framework (compartment
models, plug-flow reactors, batch or fedbatch cultures as well as
accelerostat cultures). Population balances can be solved using
either class ormomentmethods,with all core routines –formoment
quadrature or distribution reconstruction– built into this software.

Following the case configuration provided by the user, this tool
formulates the corresponding ODE in terms of mass and volume
balances. This set of ODE is then solved using an explicit scheme
for time integration, either the Runge-Kutta 2,3 pair of Bogacki
and Shampine (1989) or a simple first-order Euler scheme. The
specificities of our solver compared to the built-in ‘‘ode23” func-
tion are (i) its capability of running in parallel (multi-core) mode
by distributing the resolved variables and the reconstruction com-
puting across CPU cores, and (ii) the fact that it enforces the consis-
tency of resolved variables (mainly their non-negativity) in a more
stringent way.

We used the simple explicit Euler scheme for all simulations,
and choose a timestep dt tiny enough to make the solution inde-
pendent from this timestep.
3. Results

3.1. Stressed chemostat culture

In a first attempt of applying the method of moments with
reconstruction of the NDF, we chose to reproduce numerically
the experimental results from Kätterer et al. (1986). We simulate
a homogeneous chemostat culture with a constant initial dilution

rate D ¼ 0:1 h�1 for 30 h in order to reach a steady-state, we then

apply a sudden shift in dilution rate toward D0 ¼ 0:42 h�1 in order
to analyse 15 h of the transient-state.

As the original experiments were conducted using Candida trop-
icalis instead of E. coli, we adjusted the parameters of our metabolic
model to fit quantitatively the biomass and substrate curves pro-
vided by Kätterer et al. (1986). It is however obvious that the meta-
bolic behaviours of the yeast C. tropicalis and the bacteria E. coli are
quite different and a mere parameter adjustment of a E. coli meta-
bolic model will not produce a model exhibiting the metabolic
behaviour of C. tropicalis. Here, we are only interested in the anal-
ysis of the population balance part of the model. We shall investi-
gate each reconstruction method in terms of stability, computation
time, and accuracy of the reconstruction. The shape of the recon-
struction will have a metabolic impact in terms of acetate produc-
tion, and we will only compare these productions between class
and moment methods, not against experimental results.

The Fig. 2 shows simulation results for each method, with dif-
ferent orders or resolution. We applied QMOM with order ranging
from P ¼ 2 to P ¼ 5 (N ¼ 2P), EQMOM with order ranging from
P ¼ 1 to P ¼ 3 (N ¼ 2P þ 1) and MaxEnt with P ranging from 2 to
6 (N ¼ P þ 1).

The overall dynamics are well reproduced by each method, even
with as few as two nodes with QMOM, even though that last
method gives noticeably different results depending on its order.
As explained before, the overall dynamics does not depend directly
on the redistribution term of the PBE (Eq. (11)) but mainly on the



Fig. 2. Simulation results for each method, compared with experimental data from Kätterer et al. (1986).
adaptation term. The moment formulation of this term needs a clo-
sure method to estimate the next unsolved moment, so as long as
this estimation is reasonably accurate, the dynamics should be
well reproduced.

We then assessed the error on the estimation of the next
unknown moment for each method and order by comparing them
to the moments calculated with 400 classes. Full data set is pro-
vided as supplementary data. It is shown that the error is mainly
kept under 0.2%.

In terms of shape of the reconstruction, we can use the same
data set to compare the original distribution solved with the class
method to the reconstructions as illustrated on Fig. 3.
Fig. 3. Comparison of reconstructed distributions against distribution resolve
The shape of the reconstruction has two main effects. It affects
the biomass concentration at steady-state due to the Pirt law
which changes the yield of substrate conversion to biomass
depending on the property l of each individual. The population
mean conversion yield will then depend on that shape, which
explains why steady-state biomass concentrations are order-
dependent for QMOM (Fig. 2b). However, as the resulting recon-
structions are quite similar with EQMOM and MaxEnt (Fig. 3), no
matter the order of the method, they always predict similar
steady-state biomass concentrations.

The second effect is the metabolic behaviour. As stated before,
our metabolic model does not represent the actual metabolic beha-
d by class. An arbitrary scale is used for the Dirac distribution (QMOM).



Fig. 4. Evolution of acetate concentrations as predicted by the E. coli metabolic
model. Black dash-dotted line: results from class method.

Fig. 5. Mean run-time per timestep for each method and different orders (ms/ts)
(� standard deviation measured on 20 simulations per method and order).
viour of Candida tropicalis, however, it describe the overflow meta-
bolism existing in E. coliwhich leads to acetate production in a way
that depends on the shape of the distribution. Fig. 4 illustrates
these different acetate productions depending on the chosen
method. Once again, QMOM exhibits different behaviours depend-
ing on the order of the method, while EQMOM and MaxEnt lead to
predictions close to the class method.

Acetate production is slightly overestimated by all moment
methods (Fig. 4), due to the fact that they do not account for the
narrow peak of the distribution (Fig. 3b,c,d). This slightly overesti-
mates the disequilibrium between the individuals and their envi-
ronment, which is a key point in our modelling: the
disequilibrium between the cell uptake of substrate and its
requirements for growth determines the intensity of the overflow
metabolism (i.e. the production of by-products, here the acetate).

In terms of simulation performances, the Fig. 5 details the mean
computation time spent on each time-step of the simulation. A
blank simulation –ran without computing the terms related to
bioreaction or population balance– is shown in order to estimate
and distinguish the actual models computation time from the time
spent on other tasks in the software.

The class method is a direct one, the computation time is
mainly spent on (i) computing the metabolic model from Pigou
and Morchain (2015) for each class and (ii) computing the redistri-
bution term of the PBE as detailed in Morchain et al. (in press) for
each class, which implies computing NC þ 1 values of the Owen’s T
function using 10-nodes Gauss-Legendre quadratures (with NC the
number of classes).

All method of moments must compute the first N moments of
the skewnormal distribution which is not expensive considering
that their expressions are available. The major computational cost
then comes from (i) establishing the quadrature rule and (ii) com-
puting the metabolic model for each node of the quadrature.

In this regard, QMOM is the least expensivemethod: the quadra-
ture rule is computed using directly either the Product-Difference
Algorithm (PDA) or the Wheeler Algorithm (WA), both consisting
in computing the eigenvalues and eigenvectors of a particular
N=2� N=2 matrix, and computing the metabolic model for N=2
nodes. The WA seems to be slightly faster than the PDA.

In order to establish a quadrature rule with the EQMOM
method, Marchisio and Fox (2013) detail the analytical solution
for N ¼ 3 and a solution whose cost is hardly higher than a 2 nodes
QMOM for N ¼ 5, which explains the low computation times for
these two orders of resolution. The case N ¼ 7 needs an iterative
algorithm to find the suited quadrature rule, based on a dichotomic
method. We speed-up that method by making use of the result
from the previous timestep, the dichotomic algorithm then con-
verges most of the time in 3 to 6 evaluation of the objective func-
tion, each of which requiring a single call to the WA.

Finally,MaxEnt is themost expensivemethod. It is actually as fast
as QMOMand EQMOMwhen themoment set is far from the frontier
of the moment space, but our model often produces moment sets
near the frontier. Then,we slowdown themethod by using different
tweaks in order to stabilise it: (i) the adaptive quadrature proposed
by (Vié et al., 2013), (ii) the dynamic adaptation of the distribution’s
support and (iii) the computation of canonical moments to check
realizability of the moment set. The underlying Newton-Raphson
procedure often converges in a single iteration, but this number
increases up to 10 for many time-steps after the dilution rate shift,
so simulating the next few hours following this shift is actually as
long as computing the rest of the time range.



Fig. 6. Representation of the macroscopic flow patterns in the fedbatch reactor (left) and details of its compartmentalization and specific flows for the top of the reactor
(right). Values for the flow rates CF, IF and EF are given in the appendix B of Pigou and Morchain (2015).
3.2. Fedbatch culture - Vrabel et al.

We simulated the very same fedbatch culture described with a
70 compartments hydrodynamic model by Vrábel et al. (2001) but
using our own biological modelling as detailed in Pigou and
Fig. 7. Simulation results for the different population balance methods in the heterogene
Acetate concentration and (d) Acetate specific production rate.
Morchain (2015). Here, we reproduce these simulations, by using
the methods of moments to solve the population balance model.
The QMOMmethod is applied with 5 nodes (N = 10) as this seemed
to be required to produce the same results than the EQMOM and
MaxEnt methods (Figs. 2 and 4). The MaxEnt method is used with
ous fedbatch culture. (a) Glucose concentration, (b) Total biomass concentration, (c)



Fig. 9. Comparison of simulation runtimes for each method (ms=ts) (� standard
deviation measured on 5 simulations per method and order). Simulations
performed using 5 CPU cores.
N = 5 moments as we did not manage to increase the number of
moments up to 7 is this setup due to stability issues and also
because, surprisingly, the prediction of acetate production was
actually better with 5 moments than with 7 moments (see
Fig. 4c). Finally, EQMOM was also applied with N = 5 moments as
going up to 7 moments did not increase the precision drastically
(Fig. 4b) but did increase significantly the computation time
(Fig. 5). This will also make the comparison between MaxEnt and
EQMOM more relevant.

In order to enforce the consistency of numerical results, we
limit the maximum value of the time-step to the minimum com-
partment mean-residence-time:

dtmax ¼ min
Nc

n¼1

VnPNc
m¼1Qn;m

 !
ð34Þ

The value of the maximum time-step for the compartment
model shown in Fig. 6 is dtmax ¼ 1:4710�5 h.

The Fig. 7 gathers the results in term of glucose, total biomass
and acetate concentrations as well as mean population reaction
rates. The plotted values are mean values at different heights
(volumetric mean value over compartments of the same row).
The three heights (top, middle and bottom) correspond to the
following compartments (see Fig. 6 for numbering):

� top: compartments 11–15,
� middle: compartments 36–40,
� bottom: compartments 61–65.

The good agreements between the methods is related to
the fact that, in the heterogeneous large-scale reactor, the
distribution is continuously perturbed by external fluctuations
which prevent the apparition of the narrow distribution seen
previously (Fig. 3). The expected distribution has a smoother
shape which is well reconstructed by MaxEnt and EQMOM as
shown in Fig. 8.

Finally, we ran 5 times the first hour of simulation in order to
gather statistics about simulation runtimes in the heterogeneous
case with different orders of resolution. The results are shown in
Fig. 9.

Each CPU core had to perform calculations for 14 compartments
in Fig. 9 while a single compartment was considered in Fig. 5 which
explains the overall higher computation times. However, the previ-
ous analysis about the comparison of the complexity of each
method remains the same, and the observations on the heteroge-
neous case are the same than in the homogeneous case: QMOM
maintains a constant computation time, EQMOM is as fast as
Fig. 8. Comparison of distribution shapes as resolved by the class method and rec
QMOM as long as N 	 5 and MaxEnt is slower than other methods
due to the stabilisation of the method.
4. Discussion

Dealing with a biological phase naturally leads to the use of the
‘‘population” semantic field due to the individual nature of cells,
each of which having its own set of properties and its own ‘‘mem-
ory”. Hence, the use of a Population Balance Model to describe a
biological population seems to be obvious, almost axiomatic.

The most natural way to solve a PBM is the class method, which
constitutes a direct resolution of the equations. However, its accu-
racy comes with the price of a high memory cost. Unpublished data
show that for simple batch and chemostat simulations, the results
are dependent on the number of classes up to 60 classes, and we
can even notice differences between 100 and 400 classes in
Fig. 2a. This number of classes is needed to span the entire prop-
erty space with sufficient accuracy, however simulations clearly
show that most of the time a large fraction of classes are nearly
empty. This means that we allocate memory for variables that
most of the time carry almost no information, but still happen
sometime to be used, depending on the state of the population.

This explains why we are shifting toward methods of moments.
They resolve basic properties of the distribution (total number,
mean, variance, skewness, flatness, . . .) which all contain useful
information no matter the state of the population. Moments gather
higher entropy about the distribution than classes, in the sense of
onstructed by the EQMOM and MaxEnt methods both with N ¼ 5 moments.



information theory. This significantly reduces the required number
of resolved variables, from more than 60, to half a dozen.

For some applications, each equation of the model can be for-
mulated in terms of moments (Hulburt and Katz, 1964; McGraw,
1997) leading to closed formulations or easy closure through the
used of quadrature based methods. In these cases, the accuracy
of the methods of moments poses no question –and is even better
than a class method considering that the latter induces numerical
diffusion in the parameter space– for a smaller memory and com-
putational cost.

Unfortunately, we deal here with a metabolic complexity that
offers no model formulation in terms of moments. We tackle this
issue by using reconstruction methods, namely QMOM, EQMOM
and MaxEnt methods; but these methods introduce quadrature
inaccuracy as well as extra computational cost, which we tried to
quantify in our simulations.

The results in terms of concentration fields are really promising,
as the biomass, glucose and acetate concentrations were well
reproduced both in the homogeneous and the heterogeneous
cases. We mainly noticed slight errors consisting in an over-
production of acetate with moment methods in the Katterer case
(see Fig. 4) due to difficulties in reconstructing a narrow distribu-
tion with a wide base (similar to a Laplace distribution). However,
we are shifting toward moment methods only to perform large-
scale simulations at low memory cost: the class method performs
just fine enough for homogeneous cases. The crucial comparison
must then be made on the large-scale simulation.

In Fig. 7, we observe a surprisingly good agreement between the
class method and the moment methods. The only noticeable differ-
ence is seen on acetate curves for the moment methods which
slightly underestimate the acetate production for t � 10 h which
induces a persistent shift along time when compared to the class
method. On this regard, the accuracy for variables whose value is
of importance (substrate and product concentrations) is satisfac-
tory for all methods.

In terms of computational cost, which we evaluate through the
simulation time, Yuan et al. (2012) already performed a compar-
ison of EQMOM and the MaxEnt methods. They observed that
EQMOM was a hundred times faster than MaxEnt for the recon-
struction of two NDF. However, we do not feel that their compar-
ison is fair: the slow convergence of MaxEnt is only due to a bad
initialization of the Newton-Raphson procedure, similar to what
we observe in our simulations for the very first time-step. We want
to supplement their observations by pointing out that when used
in time resolved simulations, which happens to be our specific
application for these methods, the MaxEnt method performs only
slightly slower than EQMOM (see Figs. 5 and 9) due to different
adjustments made in order to improve stability.

We do not develop nor try to promote a specific reconstruction
method, but only want to draw general guidelines about which
method should be used for the simulation of large-scale bioreac-
tors. We then did our best to keep the comparison of the methods
as fair as possible. On the basis of our results, here are the key
observations we made about the different methods.

EQMOM is a stable method: it behaves well near the moment
space frontier and we did not notice any particular difficulty when
increasing the number of resolved moments. When used on mono-
modal distribution, it can be applied at a low computational cost
with 3 or 5 moments, thanks to analytical solutions (Marchisio
and Fox, 2013). The possibility to increase the number of resolved
moments, without loss of stability, means that this method is also
well suited to reconstruct multi-modal distributions, this will be
useful when tracking fast population dynamics in heterogeneous
systems. Moreover, the method naturally embeds the feature of
nested quadratures: a relevant Gauss-Hermite quadrature can be
constructed on each Gaussian node of the EQMOM reconstruction,
which helps performing efficiently the integration of Eq. (2), com-
pared to MaxEnt. This can be an important advantage of this
method if the metabolic model (computation ofU) is computation-
ally expensive. Here, the metabolic model was easy enough to
compute, which hide this salient feature of EQMOM
reconstructions.

The same level of accuracy than EQMOMwith 5 moments could
be reached with QMOM using 10 moments with a similar compu-
tation time, but with less calls to the metabolic model. Both meth-
ods can then be used based on whether we try to reduce the
memory usage or the number of calls to a potentially complex
metabolic model. Similarly, as shown in A, if the redistribution
law bðl;l0Þ did not allow such a simple moment formulation
(Eq. (20)), the computational cost of EQMOM or MaxEnt to com-
pute the redistribution term would be significantly higher than
QMOM. This is directly related to the number of nodes returned
by each method for a generic integral approximation (see Fig. 1,
Eqs. (25), (28) and (33)).

MaxEnt is known to be ill-conditioned near the boundaries of
the moment space (Massot et al., 2010) or when the number of
resolved moments increases (Gzyl and Tagliani, 2010), in particular
we did not manage to perform simulations using this method and
more than 7 resolved moments, or even 5 moments in the hetero-
geneous case. This comes from the fact that we describe quite nar-
row distributions on a large support, which naturally correspond to
moments near the frontier of the moment space. When the method
is working, it might give a better reconstruction with 5 moments
than EQMOMwith 7 moments (Fig. 3a), however, using this recon-
struction to construct a relevant quadrature rule is more difficult
than for EQMOM.We then recommend its use when assessing slow
dynamics (preserving mono-modal distribution in heterogeneous
systems) for simulations where the time-step is negligible com-
pared to the characteristic time of moment evolution (to ensure
a good initialization), and only if a method can be designed to form
a set of moment far enough from the frontier of the moment space.
These are quite restrictive conditions which do not make this
method the more advisable.

Finally, in terms of memory footprint, we managed to reduce
the number of resolved variables to describe the population from
about a hundred (class method) to about only 5 variables which
will be significant when moving toward CFD simulations of biore-
actors. However, it should be noted that for MaxEnt, memory reg-
isters must be allocated both for the transported moments and for
the vector of polynomial coefficientsuwhich serves as initial value
for the Newton-Raphson procedure. MaxEnt then requires twice as
much memory space than QMOM and EQMOM methods for equiv-
alent number of resolved moments.

The significant improvements in terms of memory usage will be
even more significant when we will shift toward multivariate pop-
ulation balance models. For a bivariate distribution, the number of
classes or moments will roughly be squared leading to about 104

classes opposed to 25 moments in each geometrical node.
5. Conclusions

The point of applying population balance based modelling for
the predictive simulation of heterogeneous bioreactors is now well
established (Morchain et al., 2014; Morchain et al., in press; Pigou
and Morchain, 2015; Heins et al., 2015; Bertucco et al., 2015;
Fredrickson and Mantzaris, 2002). This paper is more focused on
numerical methods to solve the population balance model, in order
to shift from a class method to moment based methods. In our
modelling, the reconstruction methods of a NDF from a finite set
of moments is required for the computation of the population
metabolic behaviour. We then implemented QMOM, EQMOM and



Maximum Entropy methods, and challenged them in terms of sta-
bility, memory footprint, computational cost and accuracy against
class method results.

At equivalent number of resolved moments, QMOM is notice-
ably less accurate than EQMOM and MaxEnt. However, increasing
the number of moments for QMOM does not increase significantly
the computation time, which make this method competitive with
the others when looking only at accuracy and simulation runtime.

If reducing the memory footprint is the main concern, EQMOM
actually reaches the same accuracy than QMOM with half the
number of resolved moments. However, its computational cost
increases significantly between 5 and 7 resolved moments, due
to the need of an iterative procedure rather than an analytical or
direct solution.

Depending on the use case, MaxEnt has often been reported as
an interesting method (Massot et al., 2010; Vié et al., 2013; Lebaz
et al., 2016), however, we will tend to discard it for our future
works. Indeed, even when the method is well-conditioned, it is
not particularly competitive with EQMOM in terms of computation
time and accuracy, but comes with twice the memory usage of
EQMOM. Moreover, the method tends to be quickly unstable if
moments are near the limit of realizability. This poses problem
for our modelling as the lack of experimental data about the
dynamics of internal biological properties will make us formulate
models which tend toward narrow distributions until data are
available. An example of that is the PBM from Pigou and
Morchain (2015) which led to a Dirac distribution in steady-state
homogeneous systems until experimental data from Nobs and
Maerkl (2014, 2011) allowed us to improve the PBM and add an
experimentally justified redistribution term as explained in
Morchain et al. (in press).

Overall, the QMOM and EQMOM methods have shown to be
accurate and stable enough for the simulation of a large scale
bioreactor with a significantly reduced memory impact and a sim-
ulation time of the same order of magnitude than the class method.
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Appendix A. Moment formulation of the PBE

As a recall, the population balance equation is defined as

@nðlÞ
@t

¼ � @

@l
nðlÞfðlÞ½ � þ

Z þ1

0
bðl;l0Þnðl0ÞWl0dl0 ðA:1Þ

and the k-th order moment of the distribution nðlÞ is defined by

mk ¼
Z þ1

0
lknðlÞdl ðA:2Þ

We want to formulate the law of moments evolution, as the

sum of contributions from an adaptation term @ma;kðtÞ
@t

� �
, and a

growth term @mg;kðtÞ
@t

� �
:

@mkðtÞ
@t

¼ @ma;kðtÞ
@t

þ @mg;kðtÞ
@t

ðA:3Þ

The formulation of @ma;kðtÞ
@t comes by multiplying the first RHS

term of Eq. (A.1) by lk and integrating by part with respect to l:

@ma;kðtÞ
@t

¼ �
Z
Xl
lk @

@l
nðl; tÞ 
 fðlÞð Þdl ðA:4Þ

¼
Z
Xl

klk�1nðl; tÞfðlÞdl� lknðl; tÞfðlÞ� 	
@Xl ðA:5Þ
Considering that the adaptation will not allow individuals to
cross the frontier of the l-space (@Xl), the second term of Eq.
(A.5) is necessarily null. By expanding the formulation of

fðlÞ ¼ T�1 þ l
� �

ðl� � lÞ, the formulation of @ma;kðtÞ
@t in terms of

moments of the distribution is trivial:

@ma;kðtÞ
@t

¼ k
l�

T
mk�1ðtÞ þ l� � 1

T

� �
mkðtÞ �mkþ1ðtÞ

� �
ðA:6Þ

The contribution of the growth term to the moment evolution
depends both on the used quadrature method and on the propra-
bility function modeling the redistribution phenomena related to
cell division. We have

@mg;kðtÞ
@t

¼
Z
Xl
lk

Z
Xl

bðl; ~lÞWl0nðl0Þdl0
" #

dl ðA:7Þ

The approximations of nðlÞ by the methods of moments lead toZ
Xl

f ðlÞnðlÞdl �
XI

i¼1

wi � f ðLiÞ ðA:8Þ

where I;wi and Li depend on the methods used to perform the
quadrature of moments (Eqs. (25), (28) and (33)).

Using these quadratures, we reach the following expression:

@mg;kðtÞ
@t

� W
Z
Xl
lk

XI

i¼1

wiLibðl; LiÞ
 !

dl ðA:9Þ

� W
XI

i¼1

wiLi

Z
Xl
lkbðl; LiÞdl ðA:10Þ

This last formulation is generic and can be used for any redistri-
bution law bðl;l0Þ. In the case of current simulations, we base this
term on the previous work from Morchain et al. (in press) were we
identified the following probability density function as a good
model for experimental data from the literature (Nobs and
Maerkl, 2014; Yasuda, 2011):

bðl;l0Þ ¼ 2
r
/

l� l
r

� �
U a� l� l

r

� �
ðA:11Þ

with:

� /ðxÞ ¼ 1ffiffiffiffi
2p

p e�
x2
2 ,

� UðxÞ ¼ 1
2 1þ erf xffiffi

2
p
� �� �

.

The redistribution law is a skew-normal distribution whose
parameters depend on the population mean growth rate ~l but
not on the growth rate of the mother cell (hence, l0 is not used
in the expression):

~l ¼ m1ðtÞ
m0ðtÞ ðA:12Þ

l ¼ kl ~l ðA:13Þ
r ¼ kr ~l ðA:14Þ
a ¼ 3:65 ðA:15Þ

The constants kl and kr were chosen so that the PDF bðl;l0Þ fits
experimental data, but also with the constraint that the first
moment of this PDF is equal to ~l so that the redistribution term
will have no impact on the population mean growth rate. The used
values are:

Then, the growth related evolution of the distribution moments
is easily expressed in terms of moments of bðl;l0Þ ¼ bðlÞ and does
not require the moment quadrature:



@mg;kðtÞ
@t

¼
Z
Xl

lk
Z
Xl

bðlÞWl0nðl0Þdl0
" #

dl ðA:16Þ

¼ W
Z
Xl
lkbðlÞ

Z
Xl
l0nðl0Þdl0

" #
dl ðA:17Þ

¼ W
Z
Xl
lkbðlÞm1ðtÞdl ðA:18Þ

¼ Wm1ðtÞBk ðA:19Þ
Bk is the k-th order moment of the PDF bðlÞ which happens to

only depend on ~l whose value is accessible using the first two
moments of the distribution (Eq. (A.12)). The moments Bk can be
determined analytically using the Moment Generating Function
of the skew-normal distribution:

Bk ¼ @kM
@tk

ð0Þ ðA:23Þ

MðtÞ ¼ exp lt þ r2t2

2

� �
1þ erf

ratffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ a2Þp

 ! !
ðA:24Þ

We used the MATLAB Symbolic Toolbox to pre-compute the
expressions of Bk;8k 2 f0; . . . ;9g.

Note that in order to respect the constraint B1 ¼ ~l; kr and kl
must satisfy the following relationship:

kl þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a2

pð1þ a2Þ

s
kr ¼ 1 ðA:25Þ
Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ces.2017.05.026.
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