40 research outputs found

    Radial velocity planets de-aliased. A new, short period for Super-Earth 55 Cnc e

    Full text link
    Radial velocity measurements of stellar reflex motion have revealed many extrasolar planets, but gaps in the observations produce aliases, spurious frequencies that are frequently confused with the planets' orbital frequencies. In the case of Gl 581 d, the distinction between an alias and the true frequency was the distinction between a frozen, dead planet and a planet possibly hospitable to life (Udry et al. 2007; Mayor et al. 2009). To improve the characterization of planetary systems, we describe how aliases originate and present a new approach for distinguishing between orbital frequencies and their aliases. Our approach harnesses features in the spectral window function to compare the amplitude and phase of predicted aliases with peaks present in the data. We apply it to confirm prior alias distinctions for the planets GJ 876 d and HD 75898 b. We find that the true periods of Gl 581 d and HD 73526 b/c remain ambiguous. We revise the periods of HD 156668 b and 55 Cnc e, which were afflicted by daily aliases. For HD 156668 b, the correct period is 1.2699 days and minimum mass is (3.1 +/- 0.4) Earth masses. For 55 Cnc e, the correct period is 0.7365 days -- the shortest of any known planet -- and minimum mass is (8.3 +/- 0.3) Earth masses. This revision produces a significantly improved 5-planet Keplerian fit for 55 Cnc, and a self-consistent dynamical fit describes the data just as well. As radial velocity techniques push to ever-smaller planets, often found in systems of multiple planets, distinguishing true periods from aliases will become increasingly important.Comment: Accepted by ApJ (in press); 19 pages, 22 figures. Fixed typos; improved wording; added more extensive discussion of orbital eccentricity; improved figure captions; additional reference

    The architecture of the GJ876 planetary system. Masses and orbital coplanarity for planets b and c

    Full text link
    We present a combined analysis of previously published high-precision radial velocities and astrometry for the GJ876 planetary system using a self-consistent model that accounts for the planet-planet interactions. Assuming the three planets so far identified in the system are coplanar, we find that including the astrometry in the analysis does not result in a best-fit inclination significantly different than that found by Rivera and collaborators from analyzing the radial velocities alone. In this unique case, the planet-planet interactions are of such significance that the radial velocity data set is more sensitive to the inclination of the system through the dependence of the interactions on the true masses of the two gas giant planets in the system (planets b and c). The astrometry does allow determination of the absolute orbital inclination (i.e. distinguishing between i and 180-i) and longitude of the ascending node for planet b, which allows us to quantify the mutual inclination angle between its orbit and planet c's orbit when combined with the dynamical considerations. We find that the planets have a mutual inclination of 5.0 +3.9 -2.3 degrees. This result constitutes the first determination of the degree of coplanarity in an exoplanetary system around a normal star. That we find the two planets' orbits are nearly coplanar, like the orbits of the Solar System planets, indicates that the planets likely formed in a circumstellar disk, and that their subsequent dynamical evolution into a 2:1 mean motion resonance only led to excitation of a small mutual inclination. This investigation demonstrates how the degree of coplanarity for other exoplanetary systems could also be established using data obtained from existing facilities.Comment: 9 pages, accepted for publication in A&

    Measurement of the Spin-Orbit Alignment in the Exoplanetary System HD 189733

    Get PDF
    We present spectroscopy of a transit of the exoplanet HD 189733b. By modeling the Rossiter-McLaughlin effect (the anomalous Doppler shift due to the partial eclipse of the rotating stellar surface), we find the angle between the sky projections of the stellar spin axis and orbit normal to be lambda = -1.4 +/- 1.1 deg. This is the third case of a ``hot Jupiter'' for which lambda has been measured. In all three cases lambda is small, ruling out random orientations with 99.96% confidence, and suggesting that the inward migration of hot Jupiters generally preserves spin-orbit alignment.Comment: ApJ Letters, in pres

    The Kepler-10 planetary system revisited by HARPS-N: A hot rocky world and a solid Neptune-mass planet

    Get PDF
    Kepler-10b was the first rocky planet detected by the Kepler satellite and con- firmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was sta- tistically validated, but the radial velocities were only good enough to set an upper limit of 20 Mearth for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph on the Telescopio Nazionale Galileo on La Palma. In to- tal, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determina- tion for Kepler-10b to 15%. With a mass of 3.33 +/- 0.49 Mearth and an updated radius of 1.47 +0.03 -0.02 Rearth, Kepler-10b has a density of 5.8 +/- 0.8 g cm-3, very close to the value -0.02 predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 +/- 1.9 Mearth and radius of 2.35 +0.09 -0.04 Rearth, -0.04 Kepler-10c has a density of 7.1 +/- 1.0 g cm-3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods.Comment: 44 pages, 8 figures, accepted for publication in Ap

    The Solar Twin Planet Search. V. Close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468

    Get PDF
    [Methods]. We obtained high-precision radial velocities with HARPS on the ESO 3.6 m telescope and determined precise stellar elemental abundances (~0.01 dex) using MIKE spectra on the Magellan 6.5m telescope. [Results]. Our data indicate the presence of a planet with a minimum mass of 26 Earth masses around the solar twin HIP 68468. The planet is a super-Neptune, but unlike the distant Neptune in our solar system (30 AU), HIP 68468c is close-in, with a semi-major axis of 0.66 AU, similar to that of Venus. The data also suggest the presence of a super-Earth with a minimum mass of 2.9 Earth masses at 0.03 AU; if the planet is confirmed, it will be the fifth least massive radial velocity planet discovery to date and the first super-Earth around a solar twin. Both isochrones (5.9 Gyr) and the abundance ratio [Y/Mg] (6.4 Gyr) indicate an age of about 6 billion years. The star is enhanced in refractory elements when compared to the Sun, and the refractory enrichment is even stronger after corrections for Galactic chemical evolution. We determined a NLTE Li abundance of 1.52 dex, which is four times higher than what would be expected for the age of HIP 68468. The older age is also supported by the low log(R'HK) (-5.05) and low jitter. Engulfment of a rocky planet of 6 Earth masses can explain the enhancement in both lithium and the refractory elements. [Conclusions]. The super-Neptune planet candidate is too massive for in situ formation, and therefore its current location is most likely the result of planet migration that could also have driven other planets towards its host star, enhancing thus the abundance of lithium and refractory elements in HIP 68468. The intriguing evidence of planet accretion warrants further observations to verify the existence of the planets that are indicated by our data and to better constrain the nature of the planetary system around this unique star.Comment: A&A, in pres

    Trumpeting M Dwarfs with CONCH-SHELL: a Catalog of Nearby Cool Host-Stars for Habitable ExopLanets and Life

    Get PDF
    We present an all-sky catalog of 2970 nearby (d50d \lesssim 50 pc), bright (J<9J< 9) M- or late K-type dwarf stars, 86% of which have been confirmed by spectroscopy. This catalog will be useful for searches for Earth-size and possibly Earth-like planets by future space-based transit missions and ground-based infrared Doppler radial velocity surveys. Stars were selected from the SUPERBLINK proper motion catalog according to absolute magnitudes, spectra, or a combination of reduced proper motions and photometric colors. From our spectra we determined gravity-sensitive indices, and identified and removed 0.2% of these as interloping hotter or evolved stars. Thirteen percent of the stars exhibit H-alpha emission, an indication of stellar magnetic activity and possible youth. The mean metallicity is [Fe/H] = -0.07 with a standard deviation of 0.22 dex, similar to nearby solar-type stars. We determined stellar effective temperatures by least-squares fitting of spectra to model predictions calibrated by fits to stars with established bolometric temperatures, and estimated radii, luminosities, and masses using empirical relations. Six percent of stars with images from integral field spectra are resolved doubles. We inferred the planet population around M dwarfs using KeplerKepler data and applied this to our catalog to predict detections by future exoplanet surveys.Comment: Accepted to MNRAS 22 figures, 3 tables, 2 electronic tables. Electronic tables are available as links on this pag

    The Mass of Kepler-93b and The Composition of Terrestrial Planets

    Get PDF
    Kepler-93b is a 1.478 +/- 0.019 Earth radius planet with a 4.7 day period around a bright (V=10.2), astroseismically-characterized host star with a mass of 0.911+/-0.033 solar masses and a radius of 0.919+/-0.011 solar radii. Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02+/-0.68 Earth masses. The corresponding high density of 6.88+/-1.18 g/cc is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1-6 Earth masses, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses > 6 Earth masses: All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 Earth mass planets.Comment: 8 pages, 4 figures. Accepted for publication in Ap

    The Kepler-10 Planetary System Revisited by HARPS-N: A Hot Rocky World and a Solid Neptune-Mass Planet

    Get PDF
    Kepler-10b was the first rocky planet detected by the Kepler satellite and con- firmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was sta- tistically validated, but the radial velocities were only good enough to set an upper limit of 20 Mearth for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph on the Telescopio Nazionale Galileo on La Palma. In to- tal, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determina- tion for Kepler-10b to 15%. With a mass of 3.33 +/- 0.49 Mearth and an updated radius of 1.47 +0.03 -0.02 Rearth, Kepler-10b has a density of 5.8 +/- 0.8 g cm-3, very close to the value -0.02 predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 +/- 1.9 Mearth and radius of 2.35 +0.09 -0.04 Rearth, -0.04 Kepler-10c has a density of 7.1 +/- 1.0 g cm-3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods.Comment: 44 pages, 8 figures, accepted for publication in Ap

    Three’s Company: An Additional Non-transiting Super-Earth in the Bright HD 3167 System, and Masses for All Three Planets

    Get PDF
    HD 3167 is a bright (V = 8.9), nearby K0 star observed by the NASA K2 mission (EPIC 220383386), hosting two small, short-period transiting planets. Here we present the results of a multi-site, multi-instrument radial velocity campaign to characterize the HD 3167 system. The masses of the transiting planets are 5.02±0.38 MEarth for HD 3167 b, a hot super-Earth with a likely rocky composition (ρb = 5.60+2.15-1.43g cm-3), and 9.80+1.30-1.24 MEarth for HD 3167 c, a warm sub-Neptune with a likely substantial volatile complement (ρc = 1.97+0.94-0.59 g cm-3). We explore the possibility of atmospheric composition analysis and determine that planet c is amenable to transmission spectroscopy measurements, and planet b is a potential thermal emission target. We detect a third, non-transiting planet, HD 3167 d, with a period of 8.509+/-0.045 d (between planets b and c) and a minimum mass of 6.90±0.71 MEarth. We are able to constrain the mutual inclination of planet d with planets b and c: we rule out mutual inclinations below 1.3 degrees as we do not observe transits of planet d. From 1.3-40 degrees, there are viewing geometries invoking special nodal configurations which result in planet d not transiting some fraction of the time. From 40-60 degrees, Kozai-Lidov oscillations increase the system's instability, but it can remain stable for up to 100Myr. Above 60 degrees, the system is unstable. HD 3167 promises to be a fruitful system for further study and a preview of the many exciting systems expected from the upcoming NASATESS mission.Publisher PDFPeer reviewe
    corecore