264 research outputs found

    Predicting trace metal solubility and fractionation in urban soils from isotopic exchangeability

    Get PDF
    Metal-salt amended soils (MA, n = 23), and historically-contaminated urban soils from two English cities (Urban, n = 50), were investigated to assess the effects of soil properties and contaminant source on metal lability and solubility. A stable isotope dilution method, with and without a resin purification step, was used to measure the lability of Cd, Cu, Ni, Pb and Zn. For all five metals in MA soils, lability (%E-values) could be reasonably well predicted from soil pH value with a simple logistic equation. However, there was evidence of continuing time-dependent fixation of Cd and Zn in the MA soils, following more than a decade of storage under air-dried conditions, mainly in high pH soils. All five metals in MA soils remained much more labile than in Urban soils, strongly indicating an effect of contaminant source on metal lability in the latter. Metal solubility was predicted for both sets of soil by the geochemical speciation model WHAM-VII, using E-values as an input variable. For soils with low metal solution concentrations, over-estimation of Cd, Ni and Zn solubility was associated with binding to the Fe oxide fraction while accurate prediction of Cu solubility was dependent on humic acid content. Lead solubility was most poorly described, especially in the Urban soils. Generally, slightly poorer estimation of metal solubility was observed in Urban soils, possibly due to a greater incidence of high pH values. The use of isotopically exchangeable metal to predict solubility is appropriate both for historically contaminated soils and where amendment with soluble forms of metal is used, as in toxicological trials. However, the major limitation to predicting solubility may lie with the accuracy of model input variables such as humic acid and Fe oxide contents where there is often a reliance on relatively crude analytical estimations of these variables

    Induced circular dichroism of stereoregular vinyl polymers

    Get PDF
    Stereoregular vinyl polymers, poly(2-vinyl pyridine)s (P2VPs), were synthesized to examine the tacticity effect on the induced circular dichroism (ICD) via association with chiral acids. The ICD was found to be strongly dependent on the isotacticity of the P2VPs and the acidity of chiral acid in addition to its bulkiness

    Isotope effect in impure high T_c superconductors

    Full text link
    The influence of various kinds of impurities on the isotope shift exponent \alpha of high temperature superconductors has been studied. In these materials the dopant impurities, like Sr in La_{2-x}Sr_xCuO_4, play different role and usually occupy different sites than impurities like Zn, Fe, Ni {\it etc} intentionally introduced into the system to study its superconducting properties. In the paper the in-plane and out-of-plane impurities present in layered superconductors have been considered. They differently affect the superconducting transition temperature T_c. The relative change of isotope shift coefficient, however, is an universal function of T_c/T_{c0} (T_{c0} reffers to impurity free system) {\it i.e.} for angle independent scattering rate and density of states function it does not depend whether the change of T_c is due to in- or out-of-plane impurities. The role of the anisotropic impurity scattering in changing oxygen isotope coefficient of superconductors with various symmetries of the order parameter is elucidated. The comparison of the calculated and experimental dependence of \alpha/\alpha_0, where \alpha_0 is the clean system isotope shift coefficient, on T_c/T_{c0} is presented for a number of cases studied. The changes of \alpha calculated within stripe model of superconductivity in copper oxides resonably well describe the data on La_{1.8}Sr_{0.2}Cu_{1-x}(Fe,Ni)_xO_4, without any fitting parameters.Comment: 8 pages, 6 figures, Phys. Rev. B67 (2003) accepte

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others

    Multiplicity dependence of inclusive J/psi production at midrapidity in pp collisions at root s=13 TeV

    Get PDF
    Measurements of the inclusive J/psi yield as a function of charged-particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 13 TeV with ALICE at the LHC are reported. The J/psi meson yield is measured at midrapidity (vertical bar y vertical bar <0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (vertical bar eta vertical bar <1) and at forward rapidity (-3.7 <eta <-1.7 and 2.8 <eta <5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/psi yield with normalized dN(ch)/d eta is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively. (C) 2020 European Organization for Nuclear Research. Published by Elsevier B.V.Peer reviewe
    corecore