53 research outputs found

    Analysis of Clostridium beijerinckii NCIMB 8052's transcriptional response to ferulic acid and its application to enhance the strain tolerance

    Get PDF
    Background: Plant-based cellulose presents the best source of renewable sugars for biofuel production. However, the lignin associated with plant cellulose presents a hurdle as hydrolysis of this component leads to the production of inhibitory compounds, such as ferulic acid. Results: The impacts of ferulic acid, a phenolic compound commonly found in lignin hydrolysates, on the growth, solvent production, and transcriptional responses of Clostridium beijerinckii NCIMB 8052 were determined. Addition of ferulic acid to growing cultures resulted in a decrease in the growth and solvent production by 30% and 25%, respectively, when compared to the control cultures. To better understand the toxicity of this compound, microarray analyses were performed using samples taken from these cultures at three different growth states. Several gene ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified showing significant change at each status, including ATP-binding cassette (ABC) transporters, two component system, and oxidoreductase activity. Moreover, genes related with efflux systems and heat shock proteins were also strongly up-regulated. Among these, expression of the groESL operon was induced by more than fourfold and was consequently selected to improve C. beijerinckii tolerance to ferulic acid. Real-time quantitative PCR (RT-qPCR) analysis confirmed that C. beijerinckii harboring the plasmid, pSAAT-ptb_Gro, had a two-to fivefold increased groESL operon expression during growth of these cultures. Moreover, this strain was more tolerant to ferulic acid as the growth of this recombinant strain and its bioconversion of glucose into solvents were both improved. Conclusions: Using transcriptomics, we identified numerous genes that are differentially expressed when C. beijerinckii cultures were exposed to ferulic acid for varying amounts of time. The operon expressing groESL was consistently up-regulated, suggesting that this gene cluster may contribute to strain tolerance. This was confirmed as recombinant cultures showed both an enhanced growth and solvent yield in the presence of 0.5 g/L ferulic acidopen00

    Analysis of the EIAV Rev-Responsive Element (RRE) Reveals a Conserved RNA Motif Required for High Affinity Rev Binding in Both HIV-1 and EIAV

    Get PDF
    A cis-acting RNA regulatory element, the Rev-responsive element (RRE), has essential roles in replication of lentiviruses, including human immunodeficiency virus (HIV-1) and equine infection anemia virus (EIAV). The RRE binds the viral trans-acting regulatory protein, Rev, to mediate nucleocytoplasmic transport of incompletely spliced mRNAs encoding viral structural genes and genomic RNA. Because of its potential as a clinical target, RRE-Rev interactions have been well studied in HIV-1; however, detailed molecular structures of Rev-RRE complexes in other lentiviruses are still lacking. In this study, we investigate the secondary structure of the EIAV RRE and interrogate regulatory protein-RNA interactions in EIAV Rev-RRE complexes. Computational prediction and detailed chemical probing and footprinting experiments were used to determine the RNA secondary structure of EIAV RRE-1, a 555 nt region that provides RRE function in vivo. Chemical probing experiments confirmed the presence of several predicted loop and stem-loop structures, which are conserved among 140 EIAV sequence variants. Footprinting experiments revealed that Rev binding induces significant structural rearrangement in two conserved domains characterized by stable stem-loop structures. Rev binding region-1 (RBR-1) corresponds to a genetically-defined Rev binding region that overlaps exon 1 of the EIAV rev gene and contains an exonic splicing enhancer (ESE). RBR-2, characterized for the first time in this study, is required for high affinity binding of EIAV Rev to the RRE. RBR-2 contains an RNA structural motif that is also found within the high affinity Rev binding site in HIV-1 (stem-loop IIB), and within or near mapped RRE regions of four additional lentiviruses. The powerful integration of computational and experimental approaches in this study has generated a validated RNA secondary structure for the EIAV RRE and provided provocative evidence that high affinity Rev binding sites of HIV-1 and EIAV share a conserved RNA structural motif. The presence of this motif in phylogenetically divergent lentiviruses suggests that it may play a role in highly conserved interactions that could be targeted in novel anti-lentiviral therapies

    Bio-Inspired Materials For Parsing Matrix Physicochemical Control Of Cell Migration: A Review

    Get PDF
    Cell motility is ubiquitous in both normal and pathophysiological processes. It is a complex biophysical response elicited via the integration of diverse extracellular physicochemical cues. The extracellular matrix directs cell motilityvia gradients in morphogens (a.k.a. chemotaxis), adhesive proteins (haptotaxis), and stiffness (durotaxis). Three-dimensional geometrical and proteolytic cues also constitute key regulators of motility. Therefore, cells process a variety of physicochemical signals simultaneously, while making informed decisions about migration viaintracellular processing. Over the last few decades, bioengineers have created and refined natural and synthetic in vitro platforms in an attempt to isolate these extracellular cues and tease out how cells are able to translate this complex array of dynamic biochemical and biophysical features into functional motility. Here, we review how biomaterials have played a key role in the development of these types of model systems, and how recent advances in engineered materials have significantly contributed to our current understanding of the mechanisms of cell migration

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Na-Dependent Ultrafast Carrier Dynamics of CdS/Cu(In,Ga)Se<sub>2</sub> Measured by Optical Pump-Terahertz Probe Spectroscopy

    No full text
    To investigate the origin of the Na effect on photovoltaic (PV) devices, Cu­(In,Ga)­Se<sub>2</sub> (CIGS) and CdS/CIGS layers were grown on borosilicate (BS) and soda-lime glass (SLG), respectively. The defect states and nonequilibrium carrier dynamics of the samples were measured using photoluminescence (PL) and optical pump-THz probe (OPTP) spectroscopy. From the PL results, we discovered that different shallow donor–acceptor levels were formed in the CIGS layer grown on BS and SLG, respectively. In the OPTP results, relaxation times of photocarriers excited from the CdS/CIGS layer were clearly distinguishable, and are explained by the formation of different defect states depending on substrates. In BS, deep defect level ‘<i>DX</i> states’ were formed in the <i>E</i><sub>g</sub> near the p–n junction, which induce trapping photocarriers, resulting in shortening relaxation time. In SLG, there was no “<i>DX</i> state”, which clearly demonstrates the positive effect of Na atoms at the p–n junction on performance of PV devices
    corecore