62 research outputs found

    Reaction dynamics studies for the system 7Be + 208Pb at Coulomb barrier energies

    Get PDF
    The scattering process of the Radioactive Ion Beam 7Be from a 208Pb target was measured at three near-barrier energies. The quasi-elastic angular distributions were analyzed within the framework of the optical model to extract the reaction cross sections. The results are compared with those obtained for the reactions induced by the mirror projectile 7Li and by the lightest particle-stable lithium isotope 6Li on the same target. The angular distributions for the production of the two 7Be constituent clusters, namely 3He and 4He, were also measured. In agreement with what observed for the interaction of 7Be with lighter targets, the production of the heavier helium isotope resulted to be much more abundant than that of its lighter counterpart

    Silicon Photomultiplier Research and Development Studies for the Large Size Telescope of the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is the the next generation facility of imaging atmospheric Cherenkov telescopes; two sites will cover both hemispheres. CTA will reach unprecedented sensitivity, energy and angular resolution in very-high-energy gamma-ray astronomy. Each CTA array will include four Large Size Telescopes (LSTs), designed to cover the low-energy range of the CTA sensitivity (\sim20 GeV to 200 GeV). In the baseline LST design, the focal-plane camera will be instrumented with 265 photodetector clusters; each will include seven photomultiplier tubes (PMTs), with an entrance window of 1.5 inches in diameter. The PMT design is based on mature and reliable technology. Recently, silicon photomultipliers (SiPMs) are emerging as a competitor. Currently, SiPMs have advantages (e.g. lower operating voltage and tolerance to high illumination levels) and disadvantages (e.g. higher capacitance and cross talk rates), but this technology is still young and rapidly evolving. SiPM technology has a strong potential to become superior to the PMT one in terms of photon detection efficiency and price per square mm of detector area. While the advantage of SiPMs has been proven for high-density, small size cameras, it is yet to be demonstrated for large area cameras such as the one of the LST. We are working to develop a SiPM-based module for the LST camera, in view of a possible camera upgrade. We will describe the solutions we are exploring in order to balance a competitive performance with a minimal impact on the overall LST camera design.Comment: 8 pages, 5 figures. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Rilevatori ad alta granularità di particelle ionizzanti basati su elettronica ASIC

    Get PDF
    Relazione di tirocionio sull'attivita' di sviluppo dell'elettronica di frontend dell'esperimento EXPADES. la struttura modulare del sistema permette il riutilizzo in molteplici configurazioni di rivelatori segmentati. il range di misura e' compatibile con applicazioni si strumentazione biomedic

    "I Sing the body electric". Body, Voice, Technology and Religion

    No full text
    In his controversial poem “I Sing the Body Electric”, Walt Whitman glorified the human body in all its forms. The world according to Whitman is physical and sensual. Bodies are our fundamental way of being – being in the here and now, being in time and space. Bodies we have and bodies we are are as much sensed, felt, experienced, seen, or heard as they are material objects.2 As bodies, we are in space, and through our bodies, their processes, their practices, their skills, we leave traces in space and time and extend ourselves in space. Bodies that extend and reach out and communicate through voice, as well as how voice materialises the immaterial, was the topic of a colloquium, “I Sing the Body Electric”, held at the University of Hull, United Kingdom, in 2014, which in turn inspired the following special issue of the Journal for Religion, Film and Media (JRFM). Following on from the colloquium’s inspiration, this JRFM issue is dedicated to the interrelation between religion, body, technology, and voice and its analysis from an interdisciplinary perspective using approaches from musicology, philosophy, and religious studies

    Shiga toxin-induced complement-mediated hemolysis and release of complement-coated red blood cell-derived microvesicles in hemolytic uremic syndrome.

    No full text
    Shiga toxin (Stx)-producing Escherichia coli (STEC) cause hemolytic uremic syndrome (HUS). This study investigated whether Stx2 induces hemolysis and whether complement is involved in the hemolytic process. RBCs and/or RBC-derived microvesicles from patients with STEC-HUS (n = 25) were investigated for the presence of C3 and C9 by flow cytometry. Patients exhibited increased C3 deposition on RBCs compared with controls (p < 0.001), as well as high levels of C3- and C9-bearing RBC-derived microvesicles during the acute phase, which decreased after recovery. Stx2 bound to P1 (k) and P2 (k) phenotype RBCs, expressing high levels of the P(k) Ag (globotriaosylceramide), the known Stx receptor. Stx2 induced the release of hemoglobin and lactate dehydrogenase in whole blood, indicating hemolysis. Stx2-induced hemolysis was not demonstrated in the absence of plasma and was inhibited by heat inactivation, as well as by the terminal complement pathway Ab eculizumab, the purinergic P2 receptor antagonist suramin, and EDTA. In the presence of whole blood or plasma/serum, Stx2 induced the release of RBC-derived microvesicles coated with C5b-9, a process that was inhibited by EDTA, in the absence of factor B, and by purinergic P2 receptor antagonists. Thus, complement-coated RBC-derived microvesicles are elevated in HUS patients and induced in vitro by incubation of RBCs with Stx2, which also induced hemolysis. The role of complement in Stx2-mediated hemolysis was demonstrated by its occurrence only in the presence of plasma and its abrogation by heat inactivation, EDTA, and eculizumab. Complement activation on RBCs could play a role in the hemolytic process occurring during STEC-HUS

    Direct processes for the systems 7Be, 8B + 208Pb at Coulomb barrier energies

    No full text
    The elastic scattering process for the nuclear reactions induced by the Radioactive Ion Beams 7Be and 8B on a 208Pb target was measured for the first time in the energy range around the Coulomb barrier. Extensive theoretical calculations within the framework of the optical model were performed. An excellent agreement between experimental data and theoretical predictions was achieved for the reaction 7Be + 208Pb, while a comprehensive understanding of the reaction dynamics induced by the more exotic projectile 8B is still far to be reached. Predictions of the cross section for the breakup for both systems will also be given.Polish National Science Centre 2014/14/M/ST2/00738Japan Society for the Promotion of Science 16K05369, 19K0388

    7Be and 8B reaction dynamics at Coulomb barrier energies

    No full text
    We investigated the reaction dynamics induced by the 7Be,8B+208Pb collisions at energies around the Coulomb barrier. Charged particles originated by both the col- lisions were detected by means of 6 ΔE-Eres telescopes of a newly developed detector array. Experimental data were analysed within the framework of the Optical Model and the total reaction cross-sections were compared together and with the 6,7Li+208Pb colli-sion data. According to the preliminary results, 7Be nucleus reactivity is rather similar to the 7Li one whereas the 8B+208Pb total reaction cross section appears to be much larger than those measured for reactions induced by the other weakly-bound projectiles on the same target

    Quaternary seismo-tectonic activity of the Polochic fault, Guatemala

    No full text
    International audienceThe Polochic-Motagua fault system is part of the sinistral transform boundary between the North American and Caribbean plates in Guatemala and the associated seismic activity poses a threat to ∼70% of the country's population. The aim of this study is to constrain the Late Quaternary activity of the Polochic fault by determining the active structure geometry and quantifying recent displacement rates as well as paleo-seismic events. Slip rates have been estimated from offsets of Quaternary volcanic markers and alluvial fan using in situ cosmogenic 36Cl exposure dating. Holocene left-lateral slip rate and Mid-Pleistocene vertical slip rate have been estimated to 4.8 ± 2.3 mm/y and 0.3 ± 0.06 mm/y, respectively, on the central part of the Polochic fault. The horizontal slip rate is within the range of longer-term geological slip rates and short-term GPS-based estimates. In addition, the non-negligible vertical motion participates in the uplift of the block north of the fault and seems to be a manifestation of the regional, far-field stress regime. We excavated the first trench for paleo-seismological study on the Polochic fault in which we distinguish four large paleo-seismic events since 17 ky during which the Polochic fault ruptured the ground surface
    corecore