7 research outputs found

    Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe

    Get PDF
    Archaeological evidence indicates that pig domestication had begun by ~10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers ~8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local Euro-pean wild boars, although it is also possible that European wild boars were domesticated independently without any genetic con-tribution from the Near East. To test these hypotheses, we obtained mtDNA sequences from 2,099 modern and ancient pig samples and 63 nuclear ancient genomes from Near Eastern and European pigs. Our analyses revealed that European domestic pigs dating from 7,100 to 6,000 y BP possessed both Near Eastern and European nuclear ancestry, while later pigs possessed no more than 4% Near Eastern ancestry, indicating that gene flow from European wild boars resulted in a near-complete disappearance of Near East ancestry. In addition, we demonstrate that a variant at a locus encoding black coat color likely originated in the Near East and persisted in European pigs. Altogether, our results indicate that while pigs were not independently domesticated in Europe, the vast majority of human-mediated selection over the past 5,000 y focused on the genomic fraction derived from the European wild boars, and not on the fraction that was selected by early Neolithic farmers over the first 2,500 y of the domestication process

    Global phylogeographic and admixture patterns in Grey wolves and genetic legacy of an ancient Siberian Lineage

    Full text link
    The evolutionary relationships between extinct and extant lineages provide important insight into species% response to environmental change. The grey wolf is among the few Holarctic large carnivores that survived the Late Pleistocene megafaunal extinctions, responding to that period%s profound environmental changes with loss of distinct lineages and phylogeographic shifts, and undergoing domestication. We reconstructed global genome-wide phylogeographic patterns in modern wolves, including previously underrepresented Siberian wolves, and assessed their evolutionary relationships with a previously genotyped wolf from Taimyr, Siberia, dated at 35 Kya. The inferred phylogeographic structure was affected by admixture with dogs, coyotes and golden jackals, stressing the importance of accounting for this process in phylogeographic studies. The Taimyr lineage was distinct from modern Siberian wolves and constituted a sister lineage of modern Eurasian wolves and domestic dogs, with an ambiguous position relative to North American wolves. We detected gene flow from the Taimyr lineage to Arctic dog breeds, but population clustering methods indicated closer similarity of the Taimyr wolf to modern wolves than dogs, implying complex post-divergence relationships among these lineages. Our study shows that introgression from ecologically diverse con-specific and con-generic populations was common in wolves% evolutionary history, and could have facilitated their adaptation to environmental change

    Winter temperature and forest cover have shaped red deer distribution in Europe and the Ural Mountains since the Late Pleistocene

    No full text
    Aim The Expansion-Contraction model has been used to explain the responses of species to climatic changes. During periods of unfavourable climatic conditions, species retreat to refugia from where they may later expand. This paper focuses on the palaeoecology of red deer over the past 54 ka across Europe and the Urals, to reveal patterns of change in their range and explore the role of environmental conditions in determining their distribution. Location Europe and western Asia to 63 degrees E. Taxon Red deer (Cervus elaphus). Methods We collected 984 records of radiocarbon-dated red deer subfossils from the Late Pleistocene and the Holocene, including 93 original dates. For each deer sample we compiled climatic and biome type data for the corresponding time intervals. Results During the last 54 ka changes in red deer range in Europe and the Urals were asynchronous and differed between western and eastern Europe and western Asia due to different environmental conditions in those regions. The range of suitable areas for deer during the Last Glacial Maximum (LGM) was larger than previously thought and covered vast regions not only in southern but also in western and eastern Europe. Throughout the period investigated the majority of specimens inhabited forests in the temperate climatic zone. The contribution of forests in deer localities significantly decreased during the last 4 ka, due to deforestation of Europe caused by humans. Mean January temperature was the main limiting factor for species distribution. Over 90% of the samples were found in areas where mean January temperature was above -10 degrees C. Main conclusions Red deer response to climatic oscillations are in agreement with the Expansion-Contraction model but in contradiction to the statement of only the southernmost LGM refugia of the species. During the last 54 ka red deer occurred mostly in forests of the temperate climatic zone

    "Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe (vol 116, pg17231, 2019)

    Get PDF
    The authors note that the affiliation for Alexandros Triantafyllidis and Panoraia Alexandri should be listed as Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; and that the affiliation for Rose-Marie Arbogast should be listed as CNRS UMR 7044, Maison interuniversitaire des sciences de l'Homme, F-67083 Strasbourg Cedex, France. The corrected author and affiliation lines appear below. The online version has been corrected

    Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe

    Get PDF
    Archaeological evidence indicates that pig domestication had begun by ∼10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers ∼8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local European wild boars, although it is also possible that European wild boars were domesticated independently without any genetic contribution from the Near East. To test these hypotheses, we obtained mtDNA sequences from 2,099 modern and ancient pig samples and 63 nuclear ancient genomes from Near Eastern and European pigs. Our analyses revealed that European domestic pigs dating from 7,100 to 6,000 y BP possessed both Near Eastern and European nuclear ancestry, while later pigs possessed no more than 4% Near Eastern ancestry, indicating that gene flow from European wild boars resulted in a near-complete disappearance of Near East ancestry. In addition, we demonstrate that a variant at a locus encoding black coat color likely originated in the Near East and persisted in European pigs. Altogether, our results indicate that while pigs were not independently domesticated in Europe, the vast majority of human-mediated selection over the past 5,000 y focused on the genomic fraction derived from the European wild boars, and not on the fraction that was selected by early Neolithic farmers over the first 2,500 y of the domestication process
    corecore