15 research outputs found

    Precollisional development and Cenozoic evolution of the Southalpine retrobelt (European Alps)

    Get PDF
    The retrobelts of doubly vergent collisional orogens are classically interpreted as late-stage postcollisional features. Here, we integrate literature data with new structural and thermochronological evidence from the European Alps in order to document the precollisional development of the retrobelt segment exposed in the central southern Alps. During the Late Cretaceous, by inversion of inherited extensional faults of Permian age, the Variscan basement of the central southern Alps was stacked southward onto the Permian-Mesozoic cover sequences of the Adria margin. These thrust systems were first deformed within regional-scale antiforms (the "Orobic anticlines") and then cut by Eocene magmatic bodies. Our apatite fission-track data show that these units were largely structured and exhumed to shallow crustal levels before the intrusion of the Eocene magmatic rocks. Therefore, thrusting and folding in the Alpine retrobelt took place before the final closure of the Alpine Tethys and subsequent continental collision between Adria and Europe. Final exhumation and uplift in the northern part of the Southalpine retrobelt took place under a dextral transpressional regime largely coeval with the right-lateral strike-slip activity along the Insubric fault. In Neogene times, deformation propagated southward, leading to the formation of a frontal thrust belt that is largely buried beneath the Po Plain

    Mesozoic-Cenozoic Topographic Evolution of the South Tianshan (NW China): Insights from Detrital Apatite Geo-Thermochronological and Geochemical Analyses

    Get PDF
    The present-day topography of Tianshan is the product of repeated phases of Meso-Cenozoic intracontinental deformation and reactivation, whereas the long-term Mesozoic topographic evolution and the timing of the onset of Cenozoic deformation remain debated. New insights into the Meso-Cenozoic geodynamic evolution and related basin-range interactions in the Tianshan were obtained based on new detrital single-grain apatite U-Pb, fission-track, and trace-element provenance data from Mesozoic sedimentary sequences on the northern margin of the Tarim Basin. Detrital apatite U-Pb age data from Early-Middle Triassic clastic rocks show two prominent age populations at 500–390 Ma and 330–260 Ma, with a paucity of ages between 390 and 330 Ma, suggesting that sediment source is predominantly from the northern Tarim and South Tianshan. From the Late Triassic to Early Jurassic, the first appearance of populations in the 390–330 Ma and 260–220 age ranges indicates that the Central Tianshan-Yili Block and Western Kunlun Orogen were source regions for the northern margin of Tarim Basin. In the Cretaceous strata, south-directed paleocurrents combined with the decrease in the 390–330 Ma age population from the Central Tianshan-Yili Block imply that South Tianshan was uplifted and again became the main source region to the Baicheng-Kuqa depression during the Cretaceous. Our new apatite fission-track data from the southern Chinese Tianshan suggest that rapid cooling commenced at c. 30 Ma along the southern margin, and the Early Mesozoic strata exposed on the southern flank of the Tianshan underwent c. 4–5 km of late Cenozoic exhumation during this period. This age is approximately synchronous with the onset of exhumation/deformation not only in the whole Tianshan but also in the interior of the Tibetan Plateau and its margins. It suggests that far-field, N-directed shortening resulting from the India-Asia collision was transmitted to the Tianshan at that time

    Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica)

    Get PDF
    Since the first discovery of ultrahigh pressure (UHP) rocks 30 years ago in the Western Alps, the mechanisms for exhumation of (U)HP terranes worldwide are still debated. In the western Mediterranean, the presently accepted model of synconvergent exhumation (e.g., the channel-flow model) is in conflict with parts of the geologic record. We synthesize regional geologic data and present alternative exhumation mechanisms that consider the role of divergence within subduction zones. These mechanisms, i.e., (i) the motion of the upper plate away from the trench and (ii) the rollback of the lower plate, are discussed in detail with particular reference to the Cenozoic Adria-Europe plate boundary, and along three different transects (Western Alps, Calabria-Sardinia, and Corsica-Northern Apennines). In the Western Alps, (U)HP rocks were exhumed from the greatest depth at the rear of the accretionary wedge during motion of the upper plate away from the trench. Exhumation was extremely fast, and associated with very low geothermal gradients. In Calabria, HP rocks were exhumed from shallower depths and at lower rates during rollback of the Adriatic plate, with repeated exhumation pulses progressively younging toward the foreland. Both mechanisms were active to create boundary divergence along the Corsica-Northern Apennines transect, where European southeastward subduction was progressively replaced along strike by Adriatic northwestward subduction. The tectonic scenario depicted for the Western Alps trench during Eocene exhumation of (U)HP rocks correlates well with present-day eastern Papua New Guinea, which is presented as a modern analog of the Paleogene Adria-Europe plate boundary

    Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: implications for provenance discrimination and the lag-time approach to detrital thermochronology

    No full text
    Detrital thermochronology is often employed to assess the evolutionary stage of an entire orogenic belt using the lag-time approach, i.e., the difference between the cooling and depositional ages of detrital mineral grains preserved in a stratigraphic succession. The impact of different eroding sources to the final sediment sink is controlled by several factors, including the short-term erosion rate and the mineral fertility of eroded bedrock. Here, we use apatite fertility data and cosmogenic-derived erosion rates in the Po river catchment (Alps–Apennines) to calculate the expected percentage of apatite grains supplied to the modern Po delta from the major Alpine and Apenninic eroding sources. We test these predictions by using a cutting-edge dataset of trace-element and Nd-isotope signatures on 871 apatite grains from 14 modern sand samples, and we use apatite fission-track data to validate our geochemical approach to provenance discrimination. We found that apatite grains shed from different sources are geochemically distinct. Apatites from the Lepontine dome in the Central Alps show relative HREE enrichment, lower concentrations in Ce and U, and higher 147Sm/144Nd ratios compared to apatites derived from the External Massifs. Derived provenance budgets point to a dominant apatite contribution to the Po delta from the high-fertility Lepontine dome, consistent with the range independently predicted from cosmonuclide and mineral-fertility data. Our results demonstrate that the single-mineral record in the final sediment sink can be largely determined by high-fertility source rocks exposed in rapidly eroding areas within the drainage. This implies that the detrital thermochronology record may reflect processes affecting relatively small parts of the orogenic system under consideration. A reliable approach to lag-time analysis would thus benefit from an independent provenance discrimination of dated mineral grains, which may allow to proficiently reconsider many previous interpretations of detrital thermochronology datasets in terms of orogenic-wide steady state
    corecore