6,696 research outputs found

    Litters Health Status and Growth Parameters in the Sows Feeding Diets Supplemented with Probiotic Actisaf Sc 47® within Pregnancy Or Lactation

    Get PDF
    The aim of this study was to investigate the effect of supplementing standard diets for pregnant and lactating sows with live yeast culture (Saccharomyces cerevisiae) on their health status, as well as the health status and growth parameters of their litters during lactation. A total of 120 sows were divided into three groups: the first group was fed diets supplemented with probiotics during pregnancy (G+P, n=40), the second group was fed these diets during lactation (L+P, n=40), and the third group was the control group which was not fed diets supplemented with probiotics (C, n = 40). During the lactation period, a significantly (p<0.01) smaller proportion of probiotic treated sows (G+P=7.5%, L+P=12.5%) manifested clinical signs of the uterus and/or the udder disease in comparison with the control sows (22.5%). The incidence of infectious diarrhea in the nursing piglets was significantly (p<0.05) lower in the treated sows (12.5%) compared to the control sows (27.5 %). The average number of weaned piglets per litter (p/l) and average litter weight at weaning (lw) (G+P=11.6 p/l and 103.6 kg lw, L+P=11.1 p/l and 102.8 kg lw, C=10 p/l and 79 kg lw) were significantly higher (p<0.01 or p<0.05) in sows treated with probiotic compared to the control sows. These results clearly show that the use of probiotic significantly improves the health status of sows and nursing piglets, as well as the piglets growth parameters

    First observations and performance of the RPW instrument onboard the Solar Orbiter mission

    Get PDF
    The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is designed to measure in situ magnetic and electric fields and waves from the continuum up to several hundred kHz. The RPW also observes solar and heliospheric radio emissions up to 16 MHz. It was switched on and its antennae were successfully deployed two days after the launch of Solar Orbiter on February 10, 2020. Since then, the instrument has acquired enough data to make it possible to assess its performance and the electromagnetic disturbances it experiences. In this article, we assess its scientific performance and present the first RPW observations. In particular, we focus on a statistical analysis of the first observations of interplanetary dust by the instrument’s Thermal Noise Receiver. We also review the electro-magnetic disturbances that RPW suffers, especially those which potential users of the instrument data should be aware of before starting their research work

    Cold atom Clocks and Applications

    Full text link
    This paper describes advances in microwave frequency standards using laser-cooled atoms at BNM-SYRTE. First, recent improvements of the 133^{133}Cs and 87^{87}Rb atomic fountains are described. Thanks to the routine use of a cryogenic sapphire oscillator as an ultra-stable local frequency reference, a fountain frequency instability of 1.6×1014τ1/21.6\times 10^{-14}\tau^{-1/2} where τ\tau is the measurement time in seconds is measured. The second advance is a powerful method to control the frequency shift due to cold collisions. These two advances lead to a frequency stability of 2×10162\times 10^{-16} at 50,000sforthefirsttimeforprimarystandards.Inaddition,theseclocksrealizetheSIsecondwithanaccuracyof50,000s for the first time for primary standards. In addition, these clocks realize the SI second with an accuracy of 7\times 10^{-16},oneorderofmagnitudebelowthatofuncooleddevices.Inasecondpart,wedescribetestsofpossiblevariationsoffundamentalconstantsusing, one order of magnitude below that of uncooled devices. In a second part, we describe tests of possible variations of fundamental constants using ^{87}RbandRb and ^{133}$Cs fountains. Finally we give an update on the cold atom space clock PHARAO developed in collaboration with CNES. This clock is one of the main instruments of the ACES/ESA mission which is scheduled to fly on board the International Space Station in 2008, enabling a new generation of relativity tests.Comment: 30 pages, 11 figure

    Calibration and sensitivity of the Virgo detector during its second science run

    Full text link
    The Virgo detector is a kilometer-length interferometer for gravitational wave detection located near Pisa (Italy). During its second science run (VSR2) in 2009, six months of data were accumulated with a sensitivity close to its design. In this paper, the methods used to determine the parameters for sensitivity estimation and gravitational wave reconstruction are described. The main quantities to be calibrated are the frequency response of the mirror actuation and the sensing of the output power. Focus is also put on their absolute timing. The monitoring of the calibration data as well as the parameter estimation with independent techniques are discussed to provide an estimation of the calibration uncertainties. Finally, the estimation of the Virgo sensitivity in the frequency-domain is described and typical sensitivities measured during VSR2 are shown.Comment: 30 pages, 23 figures, 1 table. Published in Classical and Quantum Gravity (CQG), Corrigendum include

    Reconstruction of the gravitational wave signal h(t)h(t) during the Virgo science runs and independent validation with a photon calibrator

    Full text link
    The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series h(t)h(t) from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the h(t)h(t) signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed h(t)h(t) signal and the associated uncertainties. The uncertainties of the h(t)h(t) time series are estimated to be 8% in amplitude. The uncertainty of the phase of h(t)h(t) is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 μ\mus at high frequency. A bias lower than 4μs4\,\mathrm{\mu s} and depending on the sky direction of the GW is also present.Comment: 35 pages, 16 figures. Accepted by CQ

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    Search for Gravitational Wave Bursts from Six Magnetars

    Get PDF
    Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom

    B Physics at the Tevatron: Run II and Beyond

    Full text link
    This report provides a comprehensive overview of the prospects for B physics at the Tevatron. The work was carried out during a series of workshops starting in September 1999. There were four working groups: 1) CP Violation, 2) Rare and Semileptonic Decays, 3) Mixing and Lifetimes, 4) Production, Fragmentation and Spectroscopy. The report also includes introductory chapters on theoretical and experimental tools emphasizing aspects of B physics specific to hadron colliders, as well as overviews of the CDF, D0, and BTeV detectors, and a Summary.Comment: 583 pages. Further information on the workshops, including transparencies, can be found at the workshop's homepage: http://www-theory.lbl.gov/Brun2/. The report is also available in 2-up http://www-theory.lbl.gov/Brun2/report/report2.ps.gz or chapter-by-chapter http://www-theory.lbl.gov/Brun2/report

    Polarizations of J/psi and psi(2S) Mesons Produced in ppbar Collisions at 1.96 TeV

    Get PDF
    We have measured the polarizations of \jpsi and \psiprime mesons as functions of their transverse momentum \pt when they are produced promptly in the rapidity range y<0.6|y|<0.6 with \pt \geq 5 \pgev. The analysis is performed using a data sample with an integrated luminosity of about 800 \ipb collected by the CDF II detector. For both vector mesons, we find that the polarizations become increasingly longitudinal as \pt increases from 5 to 30 \pgev. These results are compared to the predictions of nonrelativistic quantum chromodynamics and other contemporary models. The effective polarizations of \jpsi and \psiprime mesons from BB-hadron decays are also reported.Comment: 8 pages, 7 figures, published in Physical Review Letter

    Observation and Mass Measurement of the Baryon Ξb\Xi^-_b

    Get PDF
    We report the observation and measurement of the mass of the bottom, strange baryon Ξb\Xi^-_b through the decay chain ΞbJ/ψΞ\Xi^-_b \to J/\psi \Xi^-, where J/ψμ+μJ/\psi \to \mu^+ \mu^-, ΞΛπ\Xi^- \to \Lambda \pi^-, and Λpπ\Lambda \to p \pi^-. Evidence for observation is based on a signal whose probability of arising from the estimated background is 6.6 x 10^{-15}, or 7.7 Gaussian standard deviations. The Ξb\Xi^-_b mass is measured to be 5792.9±2.55792.9\pm 2.5 (stat.) ±1.7\pm 1.7 (syst.) MeV/c2c^2.Comment: Minor text changes for the second version. Accepted by Phys. Rev. Let
    corecore