36 research outputs found

    Advanced age, time to treatment and long-term mortality: single centre data from the FAST-STEMI network

    Get PDF
    Background. Optimization of the techniques and larger accessibility to mechanical reperfusion have significantly improved the outcomes of patients with ST-segment elevation myocardial infarction (STEMI). However, suboptimal results have been observed in certain higher-risk subsets of patients, as in advanced age, where the benefits of primary PCI are more debated. We evaluated the impact of systematic primary percutaneous coronary intervention (PCI) and an optimized STEMI network on the long-term prognosis from a single centre experience.Methods. We included STEMI patients included in the FAST-STEMI network between 2016 and 2019. Ischemia duration was defined as the time from symptoms onset to coronary reopening (pain-to-balloon, PTB). The primary study endpoint (PE) was a composite of mortality and recurrent MI at long-term follow-up. Indywidual outcome endpoints were also assessed.Results. We included 253 patients undergoing primary PCI and discharged alive. Mean age was 67.2 ± 12.5 years, 75.1% males and 19.8% diabetics. At a median follow-up of 581 [307–922] days, the primary endpoint occurred in 24 patients (7.9%), of whom 5.5% died. The occurrence of a cardiovascular event was significantly associated with advanced age (p < 0.001), renal failure (p = 0.03), lower ejection fraction at discharge (p = 0.04) and longer in-hospital stay (p = 0.01). The median PTB was 198 minutes [IQR: 125–340 min], that was significantly longer among patients experiencing the PE (p = 0.01). A linear relationship was observed between age and PTB (r = 0.13, p = 0.009). However, both age ≥ 75 years and PTB above the median emerged as independent predictors of the primary endpoint (age: HR [95%CI] = 5.56 [2.26–13.7], p < 0.001, PTB: HR [95%CI] = 3.59 [1.39–9.3], p = 0.01). Similar results were observed for overall mortality.Conclusion. The present study shows that among STEMI patients undergoing primary PCI in a single centre, the duration of ischemia and advance age are independently associated to long-term mortality and recurrent myocardial infarction. However, longer time to reperfusion was observed among elderly patients

    pRb Inactivation in Mammary Cells Reveals Common Mechanisms for Tumor Initiation and Progression in Divergent Epithelia

    Get PDF
    Retinoblastoma 1 (pRb) and the related pocket proteins, retinoblastoma-like 1 (p107) and retinoblastoma-like 2 (p130) (pRb(f), collectively), play a pivotal role in regulating eukaryotic cell cycle progression, apoptosis, and terminal differentiation. While aberrations in the pRb-signaling pathway are common in human cancers, the consequence of pRb(f) loss in the mammary gland has not been directly assayed in vivo. We reported previously that inactivating these critical cell cycle regulators in divergent cell types, either brain epithelium or astrocytes, abrogates the cell cycle restriction point, leading to increased cell proliferation and apoptosis, and predisposing to cancer. Here we report that mouse mammary epithelium is similar in its requirements for pRb(f) function; Rb(f) inactivation by T(121), a fragment of SV40 T antigen that binds to and inactivates pRb(f) proteins, increases proliferation and apoptosis. Mammary adenocarcinomas form within 16 mo. Most apoptosis is regulated by p53, which has no impact on proliferation, and heterozygosity for a p53 null allele significantly shortens tumor latency. Most tumors in p53 heterozygous mice undergo loss of the wild-type p53 allele. We show that the mechanism of p53 loss of heterozygosity is not simply the consequence of Chromosome 11 aneuploidy and further that chromosomal instability subsequent to p53 loss is minimal. The mechanisms for pRb and p53 tumor suppression in the epithelia of two distinct tissues, mammary gland and brain, are indistinguishable. Further, this study has produced a highly penetrant breast cancer model based on aberrations commonly observed in the human disease

    Deletion of GABA-B receptor in schwann cells regulates remak bundles and small nociceptive C-fibers

    No full text
    The mechanisms regulating the differentiation into non-myelinating Schwann cells is not completely understood. Recent evidence indicates that GABA-B receptors may regulate myelination and nociception in the peripheral nervous system. GABA-B receptor total knock-out mice exhibit morphological and molecular changes in peripheral myelin. The number of small myelinated fibers is higher and associated with altered pain sensitivity. Herein, we analyzed whether these changes may be produced by a specific deletion of GABA-B receptors in Schwann cells. The conditional mice (P0-GABA-B1fl/fl ) show a morphological phenotype characterized by a peculiar increase in the number of small unmyelinated fibers and Remak bundles, including nociceptive C-fibers. The P0-GABA-B1fl/fl mice are hyperalgesic and allodynic. In these mice, the morphological and behavioral changes are associated with a downregulation of neuregulin 1 expression in nerves. Our findings suggest that the altered pain sensitivity derives from a Schwann cell-specific loss of GABA-B receptor functions, pointing to a role for GABA-B receptors in the regulation of Schwann cell maturation towards the non-myelinating phenotype

    The retinoblastoma protein modulates Tbx2 functional specificity

    Get PDF
    Tbx2 is a member of a large family of transcription factors defined by homology to the T-box DNA-binding domain. Tbx2 plays a key role in embryonic development, and in cancer through its capacity to suppress senescence and promote invasiveness. Despite its importance, little is known of how Tbx2 is regulated or how it achieves target gene specificity. Here we show that Tbx2 specifically associates with active hypophosphorylated retinoblastoma protein (Rb1), a known regulator of many transcription factors involved in cell cycle progression and cellular differentiation, but not with the Rb1-related proteins p107 or p130. The interaction with Rb1 maps to a domain immediately carboxy-terminal to the T-box and enhances Tbx2 DNA binding and transcriptional repression. Microarray analysis of melanoma cells expressing inducible dominant-negative Tbx2, comprising the T-box and either an intact or mutated Rb1 interaction domain, shows that Tbx2 regulates the expression of many genes involved in cell cycle control and that a mutation which disrupts the Rb1-Tbx2 interaction also affects Tbx2 target gene selectivity. Taken together, the data show that Rb1 is an important determinant of Tbx2 functional specificity

    Building the Territory of Resilience. Present and Future Perspectives of the Bioregional Experience in Sardinia

    No full text
    This book provides insights and discusses the practical application of the theoretical concept of urban bioregion complementing the general bio-regional planning cross-disciplinary issues provided in Volume I. It examines planning practices, such as relocalisation of energy flows, land protection for climate change, territorial heritage enhancement, the consideration of urban ecosystems and agro-ecology. It presents discussions on regional contexts, practices and projects for a bioregional recovery, and includes case studies from France, Belgium, Spain, Greece, Austria and Italy, discussing topics that range from the reframing of local energy production/delivery planning systems to soil protection and farmland sustainable exploitation schemes. This volume concludes with three cross-European case studies that make clear the worldwide relevance and potential of bioregional approach beyond the Global North or Western countries

    Interactive/Participatory Designing the Experience of Contemporary Maquettes

    No full text
    This essay investigates the changes and modulations between analogue and digital aspects of the architectural model, with regard to its peculiar nature as a device to convey three-dimensional information in both teaching and communication. Distinguishing between models on the architectural and urban scales, this contribution briefly reviews the development and some of the uses of this artefact as a unique medium that bridges the current cultural and social step from vertical transmission to the horizontal communication of knowledge. The models are considered important devices to learn and transmit thoughts about architecture and the landscape, even within museum institutions. Their historical importance for representing urban spaces and the territory is also analysed. In recent years, physical models have taken on original value thanks to the implementation of new technologies. These technologies not only expand the models’ functions, but also promote a use that renews and updates the relationship between object and user, increasing the participatory aspect
    corecore