22 research outputs found

    The self-organizing fractal theory as a universal discovery method: the phenomenon of life

    Get PDF
    A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Zn2+ Sensitivity of High- and Low-Voltage Activated Calcium Channels

    Get PDF
    The essential cation zinc (Zn2+) blocks voltage-dependent calcium channels in several cell types, which exhibit different sensitivities to Zn2+. The specificity of the Zn2+ effect on voltage-dependent calcium channel subtypes has not been systematically investigated. In this study, we used a transient protein expression system to determine the Zn2+ effect on low- and high-voltage activated channels. We found that in Ba2+, the IC50 value of Zn2+ was α1-subunit-dependent with lowest value for CaV1.2, and highest for CaV3.1; the sensitivity of the channels to Zn2+ was approximately ranked as CaV1.2 > CaV3.2 > CaV2.3 > CaV2.2 = CaV 2.1 ≥ CaV3.3 = CaV3.1. Although the CaV2.2 and CaV3.1 channels had similar IC50 for Zn2+ in Ba2+, the CaV2.2, but not CaV3.1 channels, had ∼10-fold higher IC50 to Zn2+ in Ca2+. The reduced sensitivity of CaV2.2 channels to Zn2+ in Ca2+ was partially reversed by disrupting a putative EF-hand motif located external to the selectivity filter EEEE locus. Thus, our findings support the notion that the Zn2+ block, mediated by multiple mechanisms, may depend on conformational changes surrounding the α1 pore regions. These findings provide fundamental insights into the mechanism underlying the inhibitory effect of zinc on various Ca2+ channel subtypes

    Insula-specific 1H magnetic resonance spectroscopy reactions in heavy smokers under acute nicotine withdrawal and after oral nicotine substitution

    Full text link
    The aim of this study was to clarify whether addiction-specific neurometabolic reaction patterns occur in the insular cortex during acute nicotine withdrawal in tobacco smokers in comparison to nonsmokers. Fourteen male smokers and 10 male nonsmokers were included. Neurometabolites of the right and the left insular cortices were quantified by magnetic resonance spectroscopy (MRS) on a 3-Tesla scanner. Three separate MRS measurements were performed in each subject: among the smokers, the first measurement was done during normal smoking behavior, the second measurement during acute withdrawal (after 24 h of smoking abstinence), and the third shortly after administration of an oral nicotine substitute. Simultaneously, craving, withdrawal symptoms, and CO levels in exhaled air were determined during the three phases. The participants in the control group underwent the same MR protocol. In the smokers, during withdrawal, the insular cortex showed a significant increase in glutamine (Gln; p = 0.023) as well as a slight increase not reaching significance for glutamine/glutamate (Glx; p = 0.085) and a nonsignificant drop in myoinositol (mI; p = 0.381). These values tended to normalize after oral nicotine substitution treatment, even though differences were not significant: Gln (p = 0.225), Glx (p = 0.107) and mI (p = 0.810). Overall, the nonsmokers (control group) did not show any metabolic changes over all three phases (p > 0.05). In smokers, acute nicotine withdrawal produces a neurometabolic reaction pattern that is partly reversed by the administration of an oral nicotine substitute. The results are consistent with the expression of an addiction-specific neurometabolic shift in the brain and confirm the fact that the insular cortex seems to play a possible role in nicotine dependence
    corecore