28 research outputs found

    The Lantern Vol. 50, No. 2, Spring 1984

    Get PDF
    ‱ The Storm ‱ Je ne sais pas ‱ The Ghetious Blastious ‱ An Empty Cradle ‱ The Playing Hands ‱ Battle Hymn ‱ A Limerick ‱ Parting Thoughts ‱ The River ‱ Miss You ‱ De la Tristeza ‱ Two So Special ‱ Time of the Unicorn ‱ The Absence ‱ Thru The Breeze ‱ Is the World Really a Round Ball? ‱ Brother ‱ To Michael ‱ Gravity ‱ Refuge ‱ Der Witwer ‱ Plastic Flowers Never Die ‱ Book on the Shelfhttps://digitalcommons.ursinus.edu/lantern/1124/thumbnail.jp

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Conception de Membranes Semi-permĂ©ables aux Gaz par Assemblage Dynamique d’Objets MolĂ©culaires et MacromolĂ©culaires

    No full text
    The strategy of Capture and sequestration of carbon dioxide (CO2) (CCS) aims to recover the gases leaving the combustion gases of thermoelectric plants. Membrane technology is one of feasible technologies. For polymeric membranes, new ways of developing materials are undertaken for gas separation. One route led us to use the concept of Dynamic Combinatorial Chemistry (DCC) molecular. When applied to polymers, this concept leads to covalent polymer molecular dynamics (dynamers). They are made dynamic by creating reversible covalent bonds between molecular or macromolecular monomer units, which allows modulating their intrinsic parameters and gives them an adaptive and evolutionary nature. The aim of our study was to develop dynamĂšres could be used as membrane for carbon dioxide separation.Firstly, climate change and membrane separation technology applied to gases are exposed. Thereafter, the transfer mechanisms of gases through membrane-based polymers are developed.Then we synthesized three series of dynamers by self-assembly of monomers and macromonomers of geometries and sizes by creating links imines. The percentage change in precursors allows us to modulate the architectural geometry of macromolecular system. To verify this, several methods of characterization were undertaken. Infrared spectroscopic analysis and 1H NMR allowed us to highlight the good connection of our precursors and respect quantities of precursors introduced. The results of DSC analysis and free volume fraction of macromolecular systems show a marked change in the geometry of the system architecture based on the percentage of precursor's macromonomerics.We determined the permeability coefficient, diffusion and solubility of gas for dynamĂšres membranes synthesized by the method of said delay. Finally, to evaluate the performance of these membranes dynamers, permselectivity results are shown in the diagrams of Robeson. They indicate that some membranes have dynamĂšres performance in terms of permeability and selectivity are quite correct, and this for several pairs of gases and in particular those concerning carbon dioxide.La stratĂ©gie de Capture et SĂ©questration du dioxyde de carbone (CO2) (CCS) a pour objectif de rĂ©cupĂ©rer ce gaz en sortie des fumĂ©es de combustion des centrales thermoĂ©lectriques. La technologie membranaire est une des technologies envisageables. Pour les membranes polymĂšres, de nouvelles voies d’élaboration de matĂ©riaux sont entreprises pour la sĂ©paration de gaz. Une de ces voies nous a conduits Ă  utiliser le concept de la Chimie Dynamique Combinatoire (CDC) molĂ©culaire. AppliquĂ© au domaine des polymĂšres, ce concept conduit aux polymĂšres dynamiques molĂ©culaires covalents (dynamĂšres). Ils sont rendus dynamiques par crĂ©ation de liaisons covalentes rĂ©versibles entre unitĂ©s monomĂ©riques molĂ©culaires ou macromolĂ©culaires, ce qui permet de moduler leurs paramĂštres intrinsĂšques et leur donnent un caractĂšre adaptif et Ă©volutif. L'objectif de notre Ă©tude a consistĂ© Ă  Ă©laborer des dynamĂšres susceptibles d'ĂȘtre utilisĂ©s comme membrane permsĂ©lective par rapport au dioxyde de carbone.Dans un premier temps, le changement climatique ainsi que la technologie de sĂ©paration membranaire appliquĂ©e aux gaz sont exposĂ©s. Par la suite, les mĂ©canismes de transferts de gaz Ă  travers une membrane Ă  base de polymĂšres sont dĂ©veloppĂ©s.Puis nous avons synthĂ©tisĂ© trois sĂ©ries dynamĂšres par auto-assemblage de monomĂšres et de macromonomĂšres de gĂ©omĂ©tries et de tailles diffĂ©rentes en crĂ©ant des liaisons imines. La variation des pourcentages en prĂ©curseurs nous permet de moduler la gĂ©omĂ©trie architecturale du systĂšme macromolĂ©culaire. Pour vĂ©rifier cela, plusieurs mĂ©thodes de caractĂ©risation ont Ă©tĂ© entreprises. Les analyses par spectroscopies IR et RMN 1H ont permises de mettre en Ă©vidence la bonne connexion de nos prĂ©curseurs ainsi que le respect des quantitĂ©s des prĂ©curseurs introduites. Les rĂ©sultats des analyses DSC et de fractions de volumes libres des systĂšmes macromolĂ©culaires indiquent une Ă©volution dans la gĂ©omĂ©trie architecturale du systĂšme en fonction du pourcentage de prĂ©curseurs macromonomĂ©riques.Nous avons dĂ©terminĂ© le coefficient de permĂ©abilitĂ©, de diffusion et de solubilitĂ© de gaz pour les membranes dynamĂšres synthĂ©tisĂ©es par la mĂ©thode dite du temps de retard. Au final, pour Ă©valuer les performances de ces membranes dynamĂšres, les rĂ©sultats de permsĂ©lectivitĂ© sont reportĂ©s sur les diagrammes de Robeson. Ils indiquent que certaines membranes dynamĂšres possĂšdent des performances en termes de permĂ©abilitĂ© et de sĂ©lectivitĂ© qui sont tout Ă  fait correctes, et ce pour plusieurs couples de gaz et en particulier ceux qui concernent le dioxyde de carbone

    Design of membranes for gas separation by dynamic assembly of molecular and macromolecular objects

    No full text
    La stratĂ©gie de Capture et SĂ©questration du dioxyde de carbone (CO2) (CCS) a pour objectif de rĂ©cupĂ©rer ce gaz en sortie des fumĂ©es de combustion des centrales thermoĂ©lectriques. La technologie membranaire est une des technologies envisageables. Pour les membranes polymĂšres, de nouvelles voies d'Ă©laboration de matĂ©riaux sont entreprises pour la sĂ©paration de gaz. Une de ces voies nous a conduits Ă  utiliser le concept de la Chimie Dynamique Constitutionnelle (CDC). AppliquĂ© au domaine des polymĂšres, ce concept conduit aux polymĂšres dynamiques molĂ©culaires covalents (dynamĂšres). Ils sont rendus dynamiques par crĂ©ation de liaisons covalentes rĂ©versibles entre unitĂ©s monomĂ©riques molĂ©culaires ou macromolĂ©culaires, ce qui permet de moduler leurs paramĂštres intrinsĂšques et leur donnent un caractĂšre adaptif et Ă©volutif. L'objectif de notre Ă©tude consiste Ă  Ă©laborer des dynamĂšres susceptibles d'ĂȘtre utilisĂ©es comme membrane permsĂ©lective par rapport au dioxyde de carbone. Dans un premier temps, le changement climatique ainsi que la technologie de sĂ©paration membranaire appliquĂ©e aux gaz sont exposĂ©s. Par la suite, les mĂ©canismes de transferts de gaz Ă  travers une membrane Ă  base de polymĂšres sont dĂ©veloppĂ©s. Puis nous avons synthĂ©tisĂ© trois sĂ©ries de dynamĂšres par auto-assemblage de monomĂšres et de macromonomĂšres de gĂ©omĂ©tries et de tailles diffĂ©rentes en crĂ©ant des liaisons imines. La variation des pourcentages en prĂ©curseurs nous permet de moduler la gĂ©omĂ©trie architecturale du systĂšme macromolĂ©culaire. Pour vĂ©rifier cela, plusieurs mĂ©thodes de caractĂ©risation ont Ă©tĂ© entreprises. Les analyses spectroscopiques infrarouges et RMN 1H ont permises de mettre en Ă©vidence la bonne connexion de nos prĂ©curseurs ainsi que le respect des quantitĂ©s des prĂ©curseurs introduites. Les rĂ©sultats des analyses DSC et de fractions de volumes libres des systĂšmes macromolĂ©culaires indiquent une Ă©volution dans la gĂ©omĂ©trie architecturale du systĂšme en fonction du pourcentage de prĂ©curseurs macromonomĂ©riques. Nous avons dĂ©terminĂ© le coefficient de permĂ©abilitĂ©, de diffusion et de solubilitĂ© de gaz pour les membranes dynamĂšres synthĂ©tisĂ©es par la mĂ©thode dit du temps de retard. Au final, pour Ă©valuer les performances de ces membranes dynamĂšres, les rĂ©sultats de permsĂ©lectivitĂ© sont reportĂ©s sur les diagrammes de Robeson. Ils indiquent que certaines membranes dynamĂšres possĂšdent des performances en termes de permĂ©abilitĂ© et de sĂ©lectivitĂ© qui sont tout Ă  fait correctes, et ce pour plusieurs couples de gaz et en particulier ceux qui concernent le dioxyde de carbone.The strategy of Capture and sequestration of carbon dioxide (CO2) (CCS) aims to recover the gases leaving the combustion gases of thermoelectric plants. Membrane technology is one of feasible technologies. For polymeric membranes, new ways of developing materials are undertaken for gas separation. One route led us to use the concept of Dynamic Constitutional Chemistry (DCC) molecular. When applied to polymers, this concept leads to covalent polymer molecular dynamics (dynamĂšres). They are made dynamic by creating reversible covalent bonds between molecular or macromolecular monomer units, which allows modulating their intrinsic parameters and gives them an adaptive and evolutionary nature. The aim of our study was to develop dynamers could be used as membrane for carbone dioxide separation. Firstly, climate change and membrane separation technology applied to gases are exposed. Thereafter, the transfer mechanisms of gases through membrane-based polymers are developed. Then we synthesized three series of dynamers by self-assembly of monomers and macromonomers of geometries and sizes by creating links imines. The percentage change in precursors allows us to modulate the architectural geometry of macromolecular system. To verify this, several methods of characterization were undertaken. Infrared spectroscopic analysis and 1H NMR allowed us to highlight the good connection of our precursors and respect quantities of precursors introduced. The results of DSC analysis and free volume fraction of macromolecular systems show a marked change in the geometry of the system architecture based on the percentage of precursor's macromonomerics. We determined the permeability coefficient, diffusion and solubility of gas for dynamĂšres membranes synthesized by the method of said delay. Finally, to evaluate the performance of these membranes dynamers, permselectivity results are shown in the diagrams of Robeson. They indicate that some membranes have dynamĂšres performance in terms of permeability and selectivity are quite correct, and those for several pairs of gases and in particular those concerning carbon dioxide

    Conception de membranes semi-perméables aux gaz par assemblage dynamique d'objets moléculaires et macromoléculaires

    No full text
    La stratĂ©gie de Capture et SĂ©questration du dioxyde de carbone (CO2) (CCS) a pour objectif de rĂ©cupĂ©rer ce gaz en sortie des fumĂ©es de combustion des centrales thermoĂ©lectriques. La technologie membranaire est une des technologies envisageables. Pour les membranes polymĂšres, de nouvelles voies d'Ă©laboration de matĂ©riaux sont entreprises pour la sĂ©paration de gaz. Une de ces voies nous a conduits Ă  utiliser le concept de la Chimie Dynamique Constitutionnelle (CDC). AppliquĂ© au domaine des polymĂšres, ce concept conduit aux polymĂšres dynamiques molĂ©culaires covalents (dynamĂšres). Ils sont rendus dynamiques par crĂ©ation de liaisons covalentes rĂ©versibles entre unitĂ©s monomĂ©riques molĂ©culaires ou macromolĂ©culaires, ce qui permet de moduler leurs paramĂštres intrinsĂšques et leur donnent un caractĂšre adaptif et Ă©volutif. L'objectif de notre Ă©tude consiste Ă  Ă©laborer des dynamĂšres susceptibles d'ĂȘtre utilisĂ©es comme membrane permsĂ©lective par rapport au dioxyde de carbone. Dans un premier temps, le changement climatique ainsi que la technologie de sĂ©paration membranaire appliquĂ©e aux gaz sont exposĂ©s. Par la suite, les mĂ©canismes de transferts de gaz Ă  travers une membrane Ă  base de polymĂšres sont dĂ©veloppĂ©s. Puis nous avons synthĂ©tisĂ© trois sĂ©ries de dynamĂšres par auto-assemblage de monomĂšres et de macromonomĂšres de gĂ©omĂ©tries et de tailles diffĂ©rentes en crĂ©ant des liaisons imines. La variation des pourcentages en prĂ©curseurs nous permet de moduler la gĂ©omĂ©trie architecturale du systĂšme macromolĂ©culaire. Pour vĂ©rifier cela, plusieurs mĂ©thodes de caractĂ©risation ont Ă©tĂ© entreprises. Les analyses spectroscopiques infrarouges et RMN 1H ont permises de mettre en Ă©vidence la bonne connexion de nos prĂ©curseurs ainsi que le respect des quantitĂ©s des prĂ©curseurs introduites. Les rĂ©sultats des analyses DSC et de fractions de volumes libres des systĂšmes macromolĂ©culaires indiquent une Ă©volution dans la gĂ©omĂ©trie architecturale du systĂšme en fonction du pourcentage de prĂ©curseurs macromonomĂ©riques. Nous avons dĂ©terminĂ© le coefficient de permĂ©abilitĂ©, de diffusion et de solubilitĂ© de gaz pour les membranes dynamĂšres synthĂ©tisĂ©es par la mĂ©thode dit du temps de retard. Au final, pour Ă©valuer les performances de ces membranes dynamĂšres, les rĂ©sultats de permsĂ©lectivitĂ© sont reportĂ©s sur les diagrammes de Robeson. Ils indiquent que certaines membranes dynamĂšres possĂšdent des performances en termes de permĂ©abilitĂ© et de sĂ©lectivitĂ© qui sont tout Ă  fait correctes, et ce pour plusieurs couples de gaz et en particulier ceux qui concernent le dioxyde de carbone.The strategy of Capture and sequestration of carbon dioxide (CO2) (CCS) aims to recover the gases leaving the combustion gases of thermoelectric plants. Membrane technology is one of feasible technologies. For polymeric membranes, new ways of developing materials are undertaken for gas separation. One route led us to use the concept of Dynamic Constitutional Chemistry (DCC) molecular. When applied to polymers, this concept leads to covalent polymer molecular dynamics (dynamĂšres). They are made dynamic by creating reversible covalent bonds between molecular or macromolecular monomer units, which allows modulating their intrinsic parameters and gives them an adaptive and evolutionary nature. The aim of our study was to develop dynamers could be used as membrane for carbone dioxide separation. Firstly, climate change and membrane separation technology applied to gases are exposed. Thereafter, the transfer mechanisms of gases through membrane-based polymers are developed. Then we synthesized three series of dynamers by self-assembly of monomers and macromonomers of geometries and sizes by creating links imines. The percentage change in precursors allows us to modulate the architectural geometry of macromolecular system. To verify this, several methods of characterization were undertaken. Infrared spectroscopic analysis and 1H NMR allowed us to highlight the good connection of our precursors and respect quantities of precursors introduced. The results of DSC analysis and free volume fraction of macromolecular systems show a marked change in the geometry of the system architecture based on the percentage of precursor's macromonomerics. We determined the permeability coefficient, diffusion and solubility of gas for dynamĂšres membranes synthesized by the method of said delay. Finally, to evaluate the performance of these membranes dynamers, permselectivity results are shown in the diagrams of Robeson. They indicate that some membranes have dynamĂšres performance in terms of permeability and selectivity are quite correct, and those for several pairs of gases and in particular those concerning carbon dioxide.MONTPELLIER-Ecole Nat.Chimie (341722204) / SudocSudocFranceF

    PrĂ©cipitations Ă  Madagascar, Mayotte, la RĂ©union et les Îles Éparses durant la saison des pluies (1971-1999) : rĂŽle et contribution des talwegs tropicaux tempĂ©rĂ©s.

    No full text
    7 pagesInternational audienceCette Ă©tude, sur la base d’un jeu de donnĂ©es pluviomĂ©triques original, recherche les mĂ©canismes Ă  l’origine de lavariabilitĂ© spatiotemporelle des prĂ©cipitations journaliĂšres observĂ©es sur Madagascar, Mayotte, La RĂ©union et les ĂźlesÉparses. L’étude se concentre sur le dĂ©but et le coeur de l’étĂ© austral de 1971 Ă  1999. Un focus sur la contribution desTalwegs Tropicaux-TempĂ©rĂ©s (TTT) est rĂ©alisĂ©. Dans une premiĂšre partie, une classification sur les sĂ©ries de prĂ©cipitationsde vingt-neuf stations a mis en Ă©vidence six types de jours et de mĂ©canismes associĂ©s. La classe sĂšche est associĂ©e Ă  desanomalies cycloniques, deux des cinq classes dont associĂ©es Ă  des TTT, les trois autres Ă  des anomalies cycloniques ou Ă  laZCIT. Dans la deuxiĂšme partie, une classification prĂ©existante du champ rĂ©gional d’ondes infrarouges sortantes (OLR) a Ă©tĂ©utilisĂ©e pour Ă©valuer la contribution des TTT aux prĂ©cipitations. Ainsi, Les TTT positionnĂ©s sur le canal du Mozambique,sont apparus favorables aux prĂ©cipitations sur l'extrĂȘme sud-ouest de Madagascar et favorisent les conditions sĂšches sur lereste de l’üle. Les TTT positionnĂ©s sur l'ocĂ©an Indien, Ă  l’est de Madagascar, semblent globalement favorables auxprĂ©cipitations sur une grande partie de Madagascar et l’üle de La RĂ©union, leur contribution spatiotemporelle est apparuecependant trĂšs variable. La confrontation des deux mĂ©thodes utilisĂ©es (CHA et k-means) a permis Ă  la fois de dĂ©crire lapluviomĂ©trie de la saison d'Ă©tĂ© et de mettre en Ă©vidence le rĂŽle et la contribution des TTT sur Madagascar et les Ăźlesenvironnantes
    corecore