58 research outputs found

    DNA Metabarcoding Methods for the Study of Marine Benthic Meiofauna

    Get PDF
    The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmars 2021.730063/full#supplementary-materialMeiofaunal animals, roughly between 0.045 and 1 mm in size, are ubiquitous and ecologically important inhabitants of benthic marine ecosystems. Their high species richness and rapid response to environmental change make them promising targets for ecological and biomonitoring studies. However, diversity patterns of benthic marine meiofauna remain poorly known due to challenges in species identification using classical morphological methods. DNA metabarcoding is a powerful tool to overcome this limitation. Here, we review DNA metabarcoding approaches used in studies on marine meiobenthos with the aim of facilitating researchers to make informed decisions for the implementation of DNA metabarcoding in meiofaunal biodiversity monitoring. We found that the applied methods vary greatly between researchers and studies, and concluded that further explicit comparisons of protocols are needed to apply DNA metabarcoding as a standard tool for assessing benthic meiofaunal community composition. Key aspects that require additional consideration include: (1) comparability of sample pre-treatment methods; (2) integration of different primers and molecular markers for both the mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear 18S rRNA genes to maximize taxon recovery; (3) precise and standardized description of sampling methods to allow for comparison and replication; and (4) evaluation and testing of bioinformatic pipelines to enhance comparability between studies. By enhancing comparability between the various approaches currently used for the different aspects of the analyses, DNA metabarcoding will improve the long-term integrative potential for surveying and biomonitoring marine benthic meiofauna.This work was funded by a BEN (Biodiversity-Ecology-Nature) grant (Number T0206/37197/2021/kg) of the Bauer-Hollmann foundation to J-NM

    A new tool for faster construction of marine biotechnology collaborative networks.

    Get PDF
    The increasing and rapid development in technologies, infrastructures, computational power, data availability and information flow has enabled rapid scientific advances. These entail transdisciplinary collaborations that maximize sharing of data and knowledge and, consequently, results, and possible technology transfer. However, in emerging scientific fields it is sometimes difficult to provide all necessary expertise within existing collaborative circles. This is especially true for marine biotechnology that directly addresses global societal challenges. This article describes the creation of a platform dedicated to facilitating the formation of short or mid-term collaborative networks in marine biotechnology. This online platform (https://www.ocean4biotech.eu/map/) enables experts (researchers and members of the marine biotechnology community in general) to have the possibility to showcase their expertise with the aim of being integrated into new collaborations/consortia on the one hand, or to use it as a search tool to complement the expertise in planned/running collaborations, on the other. The platform was created within the Ocean4Biotech (European transdisciplinary networking platform for marine biotechnology) Action, funded under the framework of the European Cooperation in Science and Technology (COST). To build the platform, an inquiry was developed to identify experts in marine biotechnology and its adjunct fields, to define their expertise, to highlight their infrastructures and facilities and to pinpoint the main bottlenecks in this field. The inquiry was open to all experts in the broad field of marine biotechnology, including non-members of the consortium. The inquiry (https://ee.kobotoolbox.org/single/UKVsBNtD) remains open for insertion of additional expertise and the resulting interactive map can be used as a display and search tool for establishing new collaborations

    Impact of graft loss among kidney diseases with a high risk of post-transplant recurrence in the paediatric population

    Get PDF
    Background Some kidney diseases tend to recur in the renal allograft after transplantation. We studied the risk of graft loss among primary renal diseases known for their high risk of recurrence and compared it with that of patients with hypoplasia and/or dysplasia. Methods Within the European Society of Paediatric Nephrology and European Renal Association and European Dialysis and Transplant Association (ESPN/ERA-EDTA) registry, we studied children from 33 countries who received a kidney transplant before the age of 20 between 1990 and 2009. Patients were censored after 5 years of follow-up and cumulative incidence competing risk analysis was used to calculate survival curves. Results Patients with focal and segmental glomerulosclerosis (FSGS), haemolytic uraemic syndrome (HUS), membranoproliferative glomerulonephritis Type I or II (MPGN), IgA nephropathy or Henoch Schönlein Purpura (HSP/IgA) or systemic lupus erythomatosus (SLE) underwent pre-emptive transplantation significantly less often than patients with hypoplasia and/or dysplasia. The rate of living donation was lower among patients with FSGS and SLE than in patients with hypoplasia and/or dysplasia. In comparison with hypoplasia and/or dysplasia patients with a risk of 14.4%, the 5-year risk of graft loss was significantly increased in patients with FSGS (25.7%) and MPGN (32.4%) while it was not significantly increased in children with HUS (18.9%), HSP/IgA (16.3%) or SLE (20.3%). One-year graft survival strongly improved among HUS patients from 17.1% in 1995-1999 to 3.6% in 2005-2009 and was not accompanied by a decrease in the number of transplantations. Conclusion The risk of graft loss is increased among specific causes of renal failure with a high risk of post-transplant recurrence. It seems likely that, due to anticipation of such risk, physicians perform less pre-emptive transplantation and provide fewer grafts from living related donors in patients with these conditions. Improved risk stratification by physicians, resulting in the identification of patients with HUS at higher or lower risk of recurrence, might explain the much improved graft survival rate

    Advancing the use of molecular methods for routine freshwater macroinvertebrate biomonitoring : the need for calibration experiments

    Get PDF
    Over the last decade, steady advancements have been made in the use of DNA-based methods for detection of species in a wide range of ecosystems. This progress has culminated in molecular monitoring methods being employed for the detection of several species for enforceable management purposes of endangered, invasive, and illegally harvested species worldwide. However, the routine application of DNA-based methods to monitor whole communities (typically a metabarcoding approach) in order to assess the status of ecosystems continues to be limited. In aquatic ecosystems, the limited use is particularly true for macroinvertebrate communities. As part of the DNAqua-Net consortium, a structured discussion was initiated with the aim to identify potential molecular methods for freshwater macroinvertebrate community assessment and identify important knowledge gaps for their routine application. We focus on three complementary DNA sources that can be metabarcoded: 1) DNA from homogenised samples (bulk DNA), 2) DNA extracted from sample preservative (fixative DNA), and 3) environmental DNA (eDNA) from water or sediment. We provide a brief overview of metabarcoding macroinvertebrate communities from each DNA source and identify challenges for their application to routine monitoring. To advance the utilisation of DNA-based monitoring for macroinvertebrates, we propose an experimental design template for a series of methodological calibration tests. The template compares sources of DNA with the goal of identifying the effects of molecular processing steps on precision and accuracy. Furthermore, the same samples will be morphologically analysed, which will enable the benchmarking of molecular to traditional processing approaches. In doing so we hope to highlight pathways for the development of DNA-based methods for the monitoring of freshwater macroinvertebrates

    New molecular methods to assess biodiversity. Potentials and pitfalls of DNA metabarcoding: a workshop report

    Get PDF
    This report presents the outcome of the joint work of PhD students and senior researchers working with DNA-based biodiversity assessment approaches with the goal to facilitate others the access to definitions and explanations about novel DNA-based methods. The work was performed during a PhD course (SLU PNS0169) at the Swedish University of Agricultural Sciences (SLU) in Uppsala, Sweden. The course was co-organized by the EU COST research network DNAqua-Net and the SLU Research Schools Focus on Soils and Water (FoSW) and Ecology - basics and applications. DNAqua-Net (COST Action CA15219, 2016-2020) is a network connecting researchers, water managers, politicians and other stakeholders with the aim to develop new genetic tools for bioassessment of aquatic ecosystems in Europe and beyond. The PhD course offered a comprehensive overview of the paradigm shift from traditional morphology-based species identification to novel identification approaches based on molecular markers. We covered the use of molecular tools in both basic research and applied use with a focus on aquatic ecosystem assessment, from species collection to the use of diversity in environmental legislation. The focus of the course was on DNA (meta)barcoding and aquatic organisms. The knowledge gained was shared with the general public by creating Wikipedia pages and through this collaborative Open Access publication, co-authored by all course participants

    DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work

    Get PDF
    Effective identification of species using short DNA fragments (DNA barcoding and DNA metabarcoding) requires reliable sequence reference libraries of known taxa. Both taxonomically comprehensive coverage and content quality are important for sufficient accuracy. For aquatic ecosystems in Europe, reliable barcode reference libraries are particularly important if molecular identification tools are to be implemented in biomonitoring and reports in the context of the EU Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD). We analysed gaps in the two most important reference databases, Barcode of Life Data Systems (BOLD) and NCBI GenBank, with a focus on the taxa most frequently used in WFD and MSFD. Our analyses show that coverage varies strongly among taxonomic groups, and among geographic regions. In general, groups that were actively targeted in barcode projects (e.g. fish, true bugs, caddisflies and vascular plants) are well represented in the barcode libraries, while others have fewer records (e.g. marine molluscs, ascidians, and freshwater diatoms). We also found that species monitored in several countries often are represented by barcodes in reference libraries, while species monitored in a single country frequently lack sequence records. A large proportion of species (up to 50%) in several taxonomic groups are only represented by private data in BOLD. Our results have implications for the future strategy to fill existing gaps in barcode libraries, especially if DNA metabarcoding is to be used in the monitoring of European aquatic biota under the WFD and MSFD. For example, missing species relevant to monitoring in multiple countries should be prioritized for future collaborative programs. We also discuss why a strategy for quality control and quality assurance of barcode reference libraries is needed and recommend future steps to ensure full utilisation of metabarcoding in aquatic biomonitoring.This paper is a deliverable of the European Cooperation in Science and Technology (COST) Action DNAqua-Net (CA15219) Working Group 1, led by Torbjørn Ekrem and Fedor Čiampor. Thanks to the University of Minho and University of Pécs for hosting workshops and working group meetings. We also thank staff at National Environment Agencies and others that provided national checklists of taxa used in biomonitoring, and otherwise assisted with checklist proof-reading: Jarmila Makovinská and Emília Mišíková Elexová (Slovakia); Steinar Sandøy and Dag Rosland (Norway); Mišel Jelič (Croatia); Marlen Vasquez (Cyprus); Adam Petrusek (Czech Republic); Kristel Panksep (Estonia); Panagiotis Kaspiditis (Greece); Matteo Montagna (Italy); Marija Katarzyte (Lithuania); Ana Rotter (Slovenia); Rosa Trabajo (Spain); Florian Altermatt (Switzerland); Kristian Meissner (Finland), Rigers Bakiu (Albania), Valentina Stamenkovic and Jelena Hinic (Macedonia); Patricia Mergen (Belgium); Gael Denys & the French Biodiversity Agency (France); Mary Kelly-Quinn (Ireland); Piotr Panek and Andrzej Zawal (Poland); Cesare Mario Puzzi (Italy); Carole Fitzpatrick (United Kingdom); Simon Vitecek (Austria); Ana Filipa Filipe (Portugal); Peter Anton Stæhr & Anne Winding (Denmark); Michael Monaghan (Germany); Alain Dohet, Lionel L'Hoste, Nora Welschbillig & Luc Ector (Luxembourg), Lujza Keresztes, (Romania). The authors also want to thank Dirk Steinke for providing the original European ERMS list for marine taxa and Florian Malard for comments on the manuscript. The preparation of the AMBI checklist was carried out in the scope of a Short-term Scientific Mission (ECOST-STSM-CA15219-150217- 082111) granted to SD visiting AZTI, Spain. ZC was supported by grants EFOP-3.6.1.-16-2016-00004 and 20765-3/2018/FEKUTSTRAT. TE was supported by the NorBOL-grant (226134/F50) from the Research Coun cil of Norway. BR, FL and MFG contributed through support from the GBOL project, which is generously funded by the German Federal Min istry of Education and Research (FKZ 01LI1101 and 01LI1501). MG contributed through support of the Polish National Science Centre, grants N N303 5794 39 and 2014/15/B/NZ8/00266. SF was funded by the project PORBIOTA - Portuguese E-Infrastructure for Information and Research on Biodiversity (POCI-01-0145-FEDER-022127), supported by Operational Thematic Program for Competitiveness and Internationalization (POCI), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER)

    The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020

    Get PDF
    Digital PCR (dPCR) has developed considerably since the publication of the Minimum Information for Publication of Digital PCR Experiments (dMIQE) guidelines in 2013, with advances in instrumentation, software, applications, and our understanding of its technological potential. Yet these developments also have associated challenges; data analysis steps, including threshold setting, can be difficult and preanalytical steps required to purify, concentrate, and modify nucleic acids can lead to measurement error. To assist independent corroboration of conclusions, comprehensive disclosure of all relevant experimental details is required. To support the community and reflect the growing use of dPCR, we present an update to dMIQE, dMIQE2020, including a simplified dMIQE table format to assist researchers in providing key experimental information and understanding of the associated experimental process. Adoption of dMIQE2020 by the scientific community will assist in standardizing experimental protocols, maximize efficient utilization of resources, and further enhance the impact of this powerful technology

    Supplementary material 1 from: Macher J, Macher T, Leese F (2017) Combining NCBI and BOLD databases for OTU assignment in metabarcoding and metagenomic datasets: The BOLD_NCBI _Merger. Metabarcoding and Metagenomics 1: e22262. https://doi.org/10.3897/mbmg.1.22262

    Get PDF
    Metabarcoding and metagenomic approaches are becoming routine techniquesfor use in biodiversity assessment and in ecological studies. The assignment of taxonomic information to millions of sequences obtained via high-throughput sequencing is challenging, as many DNA reference libraries are lacking information on certain taxonomic groups and can contain erroneous sequences. Combining different reference databases is therefore a promising approach for maximising taxonomic coverage and reliability of results. The "BOLD_NCBI_Merger" bash script is introduced, which combines sequence data obtained from the National Centre for Biotechnology Information (NCBI) GenBank and the Barcode of Life Database (BOLD) and prepares it for taxonomic assignment with the software MEGAN

    Combining NCBI and BOLD databases for OTU assignment in metabarcoding and metagenomic datasets: The BOLD_NCBI _Merger

    Get PDF
    Metabarcoding and metagenomic approaches are becoming routine techniquesfor use in biodiversity assessment and in ecological studies. The assignment of taxonomic information to millions of sequences obtained via high-throughput sequencing is challenging, as many DNA reference libraries are lacking information on certain taxonomic groups and can contain erroneous sequences. Combining different reference databases is therefore a promising approach for maximising taxonomic coverage and reliability of results. The "BOLD_NCBI_Merger" bash script is introduced, which combines sequence data obtained from the National Centre for Biotechnology Information (NCBI) GenBank and the Barcode of Life Database (BOLD) and prepares it for taxonomic assignment with the software MEGAN

    eDNA metabarcoding of rivers: Is all eDNA everywhere, all the time?

    No full text
    Environmental DNA metabarcoding has become a popular tool for the assessment of freshwater biodiversity, but it is largely unclear how sampling time and location influence the assessment of communities. Abiotic factors in rivers can change on small spatial and temporal scale and might greatly influence eDNA metabarcoding results. In this study, we sampled three German rivers at four locations per sampling site: 1. Left river side, surface water 2. Right river side, surface water, 3. Left side, close to the riverbed, 4. Right side, close to the riverbed. For the rivers Ruhr and Möhne, sampling was conducted three times in spring, each sampling one week apart. The Ruhr was again sampled in autumn and the Gillbach was sampled in winter. Sequencing on an Illumina MiSeq with degenerate COI primers Bf2/BR2 revealed diverse communities (6493 Operational taxonomic units, OTUs), which largely differed between rivers. Communities changed significantly over time in the Ruhr, but not in the Möhne. Sampling location influenced recovered communities in the Möhne and in the Ruhr in autumn. Our results have important implications for future eDNA studies, which should take into account that not all eDNA in rivers is everywhere, and not at all times.peerReviewe
    corecore