478 research outputs found
The empirical analysis of cigarette tax avoidance and illicit trade in Vietnam, 1998-2010.
Illicit trade carries the potential to magnify existing tobacco-related health care costs through increased availability of untaxed and inexpensive cigarettes. What is known with respect to the magnitude of illicit trade for Vietnam is produced primarily by the industry, and methodologies are typically opaque. Independent assessment of the illicit cigarette trade in Vietnam is vital to tobacco control policy. This paper measures the magnitude of illicit cigarette trade for Vietnam between 1998 and 2010 using two methods, discrepancies between legitimate domestic cigarette sales and domestic tobacco consumption estimated from surveys, and trade discrepancies as recorded by Vietnam and trade partners. The results indicate that Vietnam likely experienced net smuggling in during the period studied. With the inclusion of adjustments for survey respondent under-reporting, inward illicit trade likely occurred in three of the four years for which surveys were available. Discrepancies in trade records indicate that the value of smuggled cigarettes into Vietnam ranges from 300 million between 2000 and 2010 and that these cigarettes primarily originate in Singapore, Hong Kong, Macao, Malaysia, and Australia. Notable differences in trends over time exist between the two methods, but by comparison, the industry estimates consistently place the magnitude of illicit trade at the upper bounds of what this study shows. The unavailability of annual, survey-based estimates of consumption may obscure the true, annual trend over time. Second, as surveys changed over time, estimates relying on them may be inconsistent with one another. Finally, these two methods measure different components of illicit trade, specifically consumption of illicit cigarettes regardless of origin and smuggling of cigarettes into a particular market. However, absent a gold standard, comparisons of different approaches to illicit trade measurement serve efforts to refine and improve measurement approaches and estimates
Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017
Background
Understanding the patterns of HIV/AIDS epidemics is crucial to tracking and monitoring the progress of prevention and control efforts in countries. We provide a comprehensive assessment of the levels and trends of HIV/AIDS incidence, prevalence, mortality, and coverage of antiretroviral therapy (ART) for 1980–2017 and forecast these estimates to 2030 for 195 countries and territories.
Methods
We determined a modelling strategy for each country on the basis of the availability and quality of data. For countries and territories with data from population-based seroprevalence surveys or antenatal care clinics, we estimated prevalence and incidence using an open-source version of the Estimation and Projection Package—a natural history model originally developed by the UNAIDS Reference Group on Estimates, Modelling, and Projections. For countries with cause-specific vital registration data, we corrected data for garbage coding (ie, deaths coded to an intermediate, immediate, or poorly defined cause) and HIV misclassification. We developed a process of cohort incidence bias adjustment to use information on survival and deaths recorded in vital registration to back-calculate HIV incidence. For countries without any representative data on HIV, we produced incidence estimates by pulling information from observed bias in the geographical region. We used a re-coded version of the Spectrum model (a cohort component model that uses rates of disease progression and HIV mortality on and off ART) to produce age-sex-specific incidence, prevalence, and mortality, and treatment coverage results for all countries, and forecast these measures to 2030 using Spectrum with inputs that were extended on the basis of past trends in treatment scale-up and new infections.
Findings
Global HIV mortality peaked in 2006 with 1·95 million deaths (95% uncertainty interval 1·87–2·04) and has since decreased to 0·95 million deaths (0·91–1·01) in 2017. New cases of HIV globally peaked in 1999 (3·16 million, 2·79–3·67) and since then have gradually decreased to 1·94 million (1·63–2·29) in 2017. These trends, along with ART scale-up, have globally resulted in increased prevalence, with 36·8 million (34·8–39·2) people living with HIV in 2017. Prevalence of HIV was highest in southern sub-Saharan Africa in 2017, and countries in the region had ART coverage ranging from 65·7% in Lesotho to 85·7% in eSwatini. Our forecasts showed that 54 countries will meet the UNAIDS target of 81% ART coverage by 2020 and 12 countries are on track to meet 90% ART coverage by 2030. Forecasted results estimate that few countries will meet the UNAIDS 2020 and 2030 mortality and incidence targets.
Interpretation
Despite progress in reducing HIV-related mortality over the past decade, slow decreases in incidence, combined with the current context of stagnated funding for related interventions, mean that many countries are not on track to reach the 2020 and 2030 global targets for reduction in incidence and mortality. With a growing population of people living with HIV, it will continue to be a major threat to public health for years to come. The pace of progress needs to be hastened by continuing to expand access to ART and increasing investments in proven HIV prevention initiatives that can be scaled up to have population-level impact
Alternative patterns of sex chromosome differentiation in Aedes aegypti (L).
BACKGROUND: Some populations of West African Aedes aegypti, the dengue and zika vector, are reproductively incompatible; our earlier study showed that divergence and rearrangements of genes on chromosome 1, which bears the sex locus (M), may be involved. We also previously described a proposed cryptic subspecies SenAae (PK10, Senegal) that had many more high inter-sex FST genes on chromosome 1 than did Ae.aegypti aegypti (Aaa, Pai Lom, Thailand). The current work more thoroughly explores the significance of those findings. RESULTS: Intersex standardized variance (FST) of single nucleotide polymorphisms (SNPs) was characterized from genomic exome capture libraries of both sexes in representative natural populations of Aaa and SenAae. Our goal was to identify SNPs that varied in frequency between males and females, and most were expected to occur on chromosome 1. Use of the assembled AaegL4 reference alleviated the previous problem of unmapped genes. Because the M locus gene nix was not captured and not present in AaegL4, the male-determining locus, per se, was not explored. Sex-associated genes were those with FST values ≥ 0.100 and/or with increased expected heterozygosity (H exp , one-sided T-test, p < 0.05) in males. There were 85 genes common to both collections with high inter-sex FST values; all genes but one were located on chromosome 1. Aaa showed the expected cluster of high inter-sex FST genes proximal to the M locus, whereas SenAae had inter-sex FST genes along the length of chromosome 1. In addition, the Aaa M-locus proximal region showed increased H exp levels in males, whereas SenAae did not. In SenAae, chromosomal rearrangements and subsequent suppressed recombination may have accelerated X-Y differentiation. CONCLUSIONS: The evidence presented here is consistent with differential evolution of proto-Y chromosomes in Aaa and SenAae
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
Recent technological developments and challenges for phosphorus removal and recovery toward a circular economy
This review aims to summarise the current state of the art technologies for phosphorus recovery from waste and wastewater. Information corroborated here shows a clear relationship between PO4-P content in the liquid phase and the cost of phosphorus recovery. In fact, all current commercial scale operations in this review involve a phosphorus-rich waste stream. In most cases, phosphorus recovery is achieved via two key steps: solubilising phosphorus into water and then phosphate recovery via chemical precipitation/crystallisation. Recent development has also included enrichment and pre-treatment of the phosphorus rich liquid stream. Phosphorus is also a contaminant in the aquatic environment. Thus, this work also reviews the post-treatment of the liquid stream after phosphorus recovery for environmental discharge or water reuse. This review places a spotlight on the requirement for further research work especially on phosphorus enrichment at pilot- and full-scale level. The review also demonstrates the need for further research on pre-treatment and post-treatment to complement the recovery process via chemical precipitation
A low-cost method using steel-making slag to quench the residual phosphorus from wastewater effluent
This study demonstrates a novel application of steel-making slag for quenching residual phosphorus in wastewater effluent after chemical precipitation. The results showed that the phosphorus removal efficiency was low without the supernatant pH adjustment. Decreased pH of the supernatant resulted in increased removal efficiency. At the optimal conditions (i.e. pH 8.5 and steel-making slag dosage of 5 g/L), approximately 98% phosphorus removal could be achieved with the output level of less than 0.1 mg/L. The results also demonstrated that enhanced phosphorus removal by pH adjustment resulted from the involvement of adsorption in the removal process. This observation was evidenced via the compliance with Langmuir isotherm of the adsorption of phosphorus to steel-making slag at decreased pH. In addition, the results indicated that the presence of inorganic carbon in the supernatant could facilitate phosphorus removal via co-precipitation effects
Genetic interaction between two VNTRs in the MAOA gene is associated with the nicotine dependence
Nicotine dependence is an addiction to tobacco products and a global public health concern that in part would be influenced by our genetics. Smokers are reported to have reduced MAOA activity, but the results from genetic associations with this gene have been inconclusive. Two functionally relevant variable number tandem repeat (VNTR) domains, termed uVNTR and dVNTR, in the MAOA gene are well characterized transcriptional regulatory elements. In the present study, we analyzed uVNTR and dVNTR polymorphisms in the MAOA gene in the Vietnamese male population of smokers and non-smokers in order to assess the association of MAOA with the nicotine dependence measured by the Fagerström Test for Nicotine Dependence (FTND). Individual analysis of VNTRs separately identified uVNTR to be associated with the F6 question of the FTND indicating the stronger addiction to nicotine. No associations were found between the dVNTR and smoking behavior. The combination of dVNTR and uVNTR, that predicts low expression of MAOA (10–3 haplotypes), was significantly associated with the higher nicotine dependence (FTND score), longer smoking duration, and more persistent smoking behavior (fewer quit attempts). In conclusion, our study confirms that low MAOA expression is genetically predictive to the higher nicotine dependence
Soft Fibrous Syringe Architecture for Electricity-Free and Motorless Control of Flexible Robotic Systems
Flexible robotic systems (FRSs) and wearable user interfaces (WUIs) have been widely used in medical fields, offering lower infection risk and shorter recovery, and supporting amiable human–machine interactions (HMIs). Recently, soft electric, thermal, magnetic, and fluidic actuators with enhanced safety and compliance have innovatively boosted the use of FRSs and WUIs across many sectors. Among them, soft hydraulic actuators offer great speed, low noise, and high force density. However, they currently require bulky electric motors/pumps, pistons, valves, rigid accessories, and complex controllers, which inherently result in high cost, low adaptation, and complex setups. This paper introduces a novel soft fibrous syringe architecture (SFSA) consisting of two or more hydraulically connected soft artificial muscles that enable electricity-free actuation, motorless control, and built-in sensing ability for use in FRSs and WUIs. Its capabilities are experimentally demonstrated with various robotic applications including teleoperated flexible catheters, cable-driven continuum robotic arms, and WUIs. In addition, its sensing abilities to detect passive and active touch, surface texture, and object stiffness are also proven. These excellent results demonstrate a high feasibility of using a current-free and motor-less control approach for the FRSs and WUIs, enabling new methods of sensing and actuation across the robotic field
Antibiotic use and resistance in emerging economies: a situation analysis for Viet Nam.
BACKGROUND: Antimicrobial resistance is a major contemporary public health threat. Strategies to contain antimicrobial resistance have been comprehensively set forth, however in developing countries where the need for effective antimicrobials is greatest implementation has proved problematic. A better understanding of patterns and determinants of antibiotic use and resistance in emerging economies may permit more appropriately targeted interventions.Viet Nam, with a large population, high burden of infectious disease and relatively unrestricted access to medication, is an excellent case study of the difficulties faced by emerging economies in controlling antimicrobial resistance. METHODS: Our working group conducted a situation analysis of the current patterns and determinants of antibiotic use and resistance in Viet Nam. International publications and local reports published between 1-1-1990 and 31-8-2012 were reviewed. All stakeholders analyzed the findings at a policy workshop and feasible recommendations were suggested to improve antibiotic use in Viet Nam.Here we report the results of our situation analysis focusing on: the healthcare system, drug regulation and supply; antibiotic resistance and infection control; and agricultural antibiotic use. RESULTS: Market reforms have improved healthcare access in Viet Nam and contributed to better health outcomes. However, increased accessibility has been accompanied by injudicious antibiotic use in hospitals and the community, with predictable escalation in bacterial resistance. Prescribing practices are poor and self-medication is common - often being the most affordable way to access healthcare. Many policies exist to regulate antibiotic use but enforcement is insufficient or lacking.Pneumococcal penicillin-resistance rates are the highest in Asia and carbapenem-resistant bacteria (notably NDM-1) have recently emerged. Hospital acquired infections, predominantly with multi-drug resistant Gram-negative organisms, place additional strain on limited resources. Widespread agricultural antibiotic use further propagates antimicrobial resistance. CONCLUSIONS: Future legislation regarding antibiotic access must alter incentives for purchasers and providers and ensure effective enforcement. The Ministry of Health recently initiated a national action plan and approved a multicenter health improvement project to strengthen national capacity for antimicrobial stewardship in Viet Nam. This analysis provided important input to these initiatives. Our methodologies and findings may be of use to others across the world tackling the growing threat of antibiotic resistance
Multifunctional Metal Halide Perovskite-Modified Aqueous Electrolytes for Zinc Metal Batteries.
The performance of Zn metal batteries (ZMBs) is significantly hindered by the poor cycling stability and dendrite growth of Zn metal anodes. Herein, Cs2SnCl6 is introduced, a lead-free metal halide double perovskite, as a multifunctional electrolyte additive to address the challenges of Zn anodes. Utilizing a combination of molecular dynamics simulations, COMSOL simulations, and various characterization techniques, it is demonstrated that Cl-, Sn4+, and Cs+ ions generated from partial hydrolysis of Cs2SnCl6 in the 2 m ZnSO4 electrolyte can optimize the electrolyte solvation structures, suppress side reactions, facilitate Zn nucleation process, and modulate Zn deposition behavior. As a result, Zn||Zn symmetric cells with Cs2SnCl6-enhanced electrolyte achieve remarkable cycling stability over 5000 h at 1 mA cm-2, while the full cell also shows a capacity retention of 99.96% after 1000 cycles. This work provides insights into electrolyte-driven interface modulation strategies for next-generation aqueous ZMBs
- …
