1,260 research outputs found

    Nanoscale spin rectifiers controlled by the Stark effect

    Get PDF
    The control of orbital and spin state of single electrons is a key ingredient for quantum information processing, novel detection schemes, and, more generally, is of much relevance for spintronics. Coulomb and spin blockade (SB) in double quantum dots (DQDs) enable advanced single-spin operations that would be available even for room-temperature applications for sufficiently small devices. To date, however, spin operations in DQDs were observed at sub-Kelvin temperatures, a key reason being that scaling a DQD system while retaining an independent field-effect control on the individual dots is very challenging. Here we show that quantum-confined Stark effect allows an independent addressing of two dots only 5 nm apart with no need for aligned nanometer-size local gating. We thus demonstrate a scalable method to fully control a DQD device, regardless of its physical size. In the present implementation we show InAs/InP nanowire (NW) DQDs that display an experimentally detectable SB up to 10 K. We also report and discuss an unexpected re-entrant SB lifting as a function magnetic-field intensity

    Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP

    Get PDF
    Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post- translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B’. Results also show that unstructured post- ranslationally modified C-terminal tails are responsible for the dynamics of Sm-B/B’ and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.This work was funded by: BBSRC (OVM), BBSRC and EPSRC (HH and NM), EU Prospects (HH), European Science Foundation (NM), the Royal Society (CVR), and fellowship from JSPS and HFSP (YM and DAPK respectively)

    Preparing the Perfect Cuttlefish Meal: Complex Prey Handling by Dolphins

    Get PDF
    Dolphins are well known for their complex social and foraging behaviours. Direct underwater observations of wild dolphin feeding behaviour however are rare. At mass spawning aggregations of giant cuttlefish (Sepia apama) in the Upper Spencer Gulf in South Australia, a wild female Indo-Pacific bottlenose dolphin (Tursiops aduncus) was observed and recorded repeatedly catching, killing and preparing cuttlefish for consumption using a specific and ordered sequence of behaviours. Cuttlefish were herded to a sand substrate, pinned to the seafloor, killed by downward thrust, raised mid-water and beaten by the dolphin with its snout until the ink was released and drained. The deceased cuttlefish was then returned to the seafloor, inverted and forced along the sand substrate in order to strip the thin dorsal layer of skin off the mantle, thus releasing the buoyant calcareous cuttlebone. This stepped behavioural sequence significantly improves prey quality through 1) removal of the ink (with constituent melanin and tyrosine), and 2) the calcareous cuttlebone. Observations of foraging dolphin pods from above-water at this site (including the surfacing of intact clean cuttlebones) suggest that some or all of this prey handling sequence may be used widely by dolphins in the region. Aspects of the unique mass spawning aggregations of giant cuttlefish in this region of South Australia may have contributed to the evolution of this behaviour through both high abundances of spawning and weakened post-spawning cuttlefish in a small area (>10,000 animals on several kilometres of narrow rocky reef), as well as potential long-term and regular visitation by dolphin pods to this site

    The Development of a Content Analysis Model for Assessing Students’ Cognitive Learning in Asynchronous Online Discussions

    Get PDF
    The purpose of this study was to develop and validate a content analysis model for assessing students\u27 cognitive learning in asynchronous online discussions. It adopted a fully mixed methods design, in which qualitative and quantitative methods were employed sequentially for data analysis and interpretation. Specifically, the design was a sequential exploratory (QUAL→ quan) design with priority given to qualitative data and methods. Qualitative data were 800 online postings collected in two online courses. Quantitative data were 803 online postings from the same two courses but from different discussion topics and different weeks. During the qualitative process, a grounded theory approach was adopted to construct a content analysis model based on qualitative data. During the quantitative process, chi-square tests and confirmative factor analysis (CFA) which used online postings as cases or observations and was the first of its kind were performed to test if the new model fit the quantitative data

    Rural-Urban Differences in Maternal Responses to Childhood Fever in South East Nigeria

    Get PDF
    Childhood fevers due to malaria remain a major cause of morbidity and mortality among under-five children in Nigeria. The degree of vulnerability perceived by mothers will affect their perception of the severity and threat of their child's fever and the patterns of health care use. This study was undertaken to compare maternal responses to childhood fever in urban and rural areas of Enugu, south east Nigeria.Data was collected with pre-tested interviewer-administered questionnaires from 276 and 124 urban and rural households respectively. In each household, only one woman aged 15-49 years who had lived in each of the urban and rural communities for at least one year and had at least one child less than 5 years old was interviewed. Malaria was mentioned as the commonest cause of childhood fevers. Rural mothers were more likely to recognize danger signs and symptoms than urban mothers. Rural mothers use more of informal than formal health services, and there is more home management of the fever with urban than rural mothers. Chloroquine, ACT, SP and Paracetamol are the main drugs given at home for childhood fevers, but the rural mothers were more likely to use leftover drugs from previous treatment to treat the fevers than urban mothers. The urban respondents were also more likely to use a preventive measure. Urban mothers sought actions faster than rural mothers and the total cost of treatment was also higher in urban areas.Both urban and rural mothers are aware that malaria is the major cause of childhood fevers. Although rural mothers recognize childhood fever and danger signs better than urban mothers, the urban mothers' responses to fever seem to be better than that for rural mothers. These responses and differences may be important for geographical targeting by policy makers for malaria interventions

    Internalization Dissociates β2-Adrenergic Receptors

    Get PDF
    G protein-coupled receptors (GPCRs) self-associate as dimers or higher-order oligomers in living cells. The stability of associated GPCRs has not been extensively studied, but it is generally thought that these receptors move between the plasma membrane and intracellular compartments as intact dimers or oligomers. Here we show that β2-adrenergic receptors (β2ARs) that self-associate at the plasma membrane can dissociate during agonist-induced internalization. We use bioluminescence-resonance energy transfer (BRET) to monitor movement of β2ARs between subcellular compartments. BRET between β2ARs and plasma membrane markers decreases in response to agonist activation, while at the same time BRET between β2ARs and endosome markers increases. Energy transfer between β2ARs is decreased in a similar manner if either the donor- or acceptor-labeled receptor is mutated to impair agonist binding and internalization. These changes take place over the course of 30 minutes, persist after agonist is removed, and are sensitive to several inhibitors of arrestin- and clathrin-mediated endocytosis. The magnitude of the decrease in BRET between donor- and acceptor-labeled β2ARs suggests that at least half of the receptors that contribute to the BRET signal are physically segregated by internalization. These results are consistent with the possibility that β2ARs associate transiently with each other in the plasma membrane, or that β2AR dimers or oligomers are actively disrupted during internalization

    Search for the standard model Higgs boson at LEP

    Get PDF

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
    corecore