121 research outputs found
Production of dust by massive stars at high redshift
The large amounts of dust detected in sub-millimeter galaxies and quasars at
high redshift pose a challenge to galaxy formation models and theories of
cosmic dust formation. At z > 6 only stars of relatively high mass (> 3 Msun)
are sufficiently short-lived to be potential stellar sources of dust. This
review is devoted to identifying and quantifying the most important stellar
channels of rapid dust formation. We ascertain the dust production efficiency
of stars in the mass range 3-40 Msun using both observed and theoretical dust
yields of evolved massive stars and supernovae (SNe) and provide analytical
expressions for the dust production efficiencies in various scenarios. We also
address the strong sensitivity of the total dust productivity to the initial
mass function. From simple considerations, we find that, in the early Universe,
high-mass (> 3 Msun) asymptotic giant branch stars can only be dominant dust
producers if SNe generate <~ 3 x 10^-3 Msun of dust whereas SNe prevail if they
are more efficient. We address the challenges in inferring dust masses and
star-formation rates from observations of high-redshift galaxies. We conclude
that significant SN dust production at high redshift is likely required to
reproduce current dust mass estimates, possibly coupled with rapid dust grain
growth in the interstellar medium.Comment: 72 pages, 9 figures, 5 tables; to be published in The Astronomy and
Astrophysics Revie
Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer
Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.Peer reviewe
A Glycoprotein in Shells of Conspecifics Induces Larval Settlement of the Pacific Oyster Crassostrea gigas
Settlement of larvae of Crassostrea gigas on shell chips (SC) prepared from shells of 11 different species of mollusks was investigated. Furthermore, the settlement inducing compound in the shell of C. gigas was extracted and subjected to various treatments to characterize the chemical cue. C. gigas larvae settled on SC of all species tested except on Patinopecten yessoensis and Atrina pinnata. In SC of species that induced C. gigas larvae to settle, settlement was proportionate to the amount of SC supplied to the larvae. When compared to C. gigas SC, all species except Crassostrea nippona showed lower settlement inducing activities, suggesting that the cue may be more abundant or in a more available form to the larvae in shells of conspecific and C. nippona than in other species. The settlement inducing activity of C. gigas SC remained intact after antibiotic treatment. Extraction of C. gigas SC with diethyl ether (Et2O-ex), ethanol (EtOH-ex), and water (Aq-ex) did not induce larval settlement of C. gigas larvae. However, extraction of C. gigas SC with 2N of hydrochloric acid (HCl-ex) induced larval settlement that was at the same level as the SC. The settlement inducing compound in the HCl-ex was stable at 100°C but was destroyed or degraded after pepsin, trypsin, PNGase F and trifluoromethanesulfonic acid treatments. This chemical cue eluted between the molecular mass range of 45 and 150 kDa after gel filtration and revealed a major band at 55 kDa on the SDS-PAGE gel after staining with Stains-all. Thus, a 55 kDa glycoprotein component in the organic matrix of C. gigas shells is hypothesized to be the chemical basis of larval settlement on conspecifics
Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer
Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer
Sugar-mediated ligand-receptor interactions in the immune system.
Most molecules involved in the recognition and elimination of pathogens by the immune system are glycoproteins. Oligosaccharides attached to glycoproteins initiate biological functions through mechanisms that involve multiple interactions of the monosaccharide residues with receptors. For example, calreticulin, a quality-control lectin-like chaperone, interacts with glucosylated mannose glycans presented by empty major histocompatibility complex (MHC) class I molecules, retaining them in the endoplasmic reticulum (ER) until antigenic peptide is loaded. Clusters of specific IgG glycoforms, present in increased amounts in rheumatoid arthritis, bind mannose-binding lectin (MBL), providing a potential route to inflammation through activation of the complement pathway. Secretory IgA glycans bind gut bacteria, and an unusual cluster of mannose residues on gp120, the surface coat protein of the HIV virus, is recognized by the novel 'domain-swapped' IgG 2G12 serum antibody
Structural aspects of glycomes with a focus on N-glycosylation and glycoprotein folding.
The pace of data accumulation in glycobiology has lately rapidly increased, largely due to high-throughput technologies. In this increasingly data-rich environment, computer science started to play a central role in handling the data, extracting significant biological information, and probing the missing parts of the 'scenery' by prediction, modelling or simulation. Investigating and comparing glycomes by bioinformatics and structural methods has great practical value and sharply increased in popularity in the past couple of years. In this context, advances have also been made with regard to structural aspects of protein N-glycosylation and consequences for glycoprotein folding. In these areas, however, an approach that integrates glycobiology with protein science is necessary
- …